【題目】(1)如圖1,點(diǎn)O是線段AD的中點(diǎn),分別以AODO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接ACBD,相交于點(diǎn)E,連接BC.求∠AEB的大小;

(2)如圖2,OAB固定不動(dòng),保持OCD的形狀和大小不變,將OCD繞點(diǎn)O旋轉(zhuǎn)(OABOCD不能重疊),求∠AEB的大。

【答案】(1)60°;(2)60°

【解析】試題分析:(1),DOCABO都是等邊三角形,且點(diǎn)O是線段AD的中點(diǎn),可得OD=OC=OB=OA,1=2=60°,4=5,從而利用外角的性質(zhì)可得∠AEB=4+6=4+5=2=60°;

(2)DOCABO都是等邊三角形,且點(diǎn)O是線段AD的中點(diǎn),可得OD=OC=OB=OA,∠1=∠2=60°,4=5,6=7,根據(jù)三角形內(nèi)角和可得∠5=6,從而利用外角的性質(zhì)可得∠AEB=2+6﹣5=2+5﹣5=2.

解:(1)如圖3,

∵△DOC和△ABO都是等邊三角形,

且點(diǎn)O是線段AD的中點(diǎn),

∴OD=OC=OB=OA,∠1=∠2=60°,

∴∠4=∠5.

又∵∠4+∠5=∠2=60°,

∴∠4=30°.

同理∠6=30°.

∵∠AEB=∠4+∠6,

∴∠AEB=60°.

(2)如圖4,

∵△DOC和△ABO都是等邊三角形,

∴OD=OC,OB=OA,∠1=∠2=60°.

∴OD=OB,OA=OC,

∴∠4=∠5,∠6=∠7.

∵∠DOB=∠1+∠3,

∠AOC=∠2+∠3,

∴∠DOB=∠AOC.

∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,

∴2∠5=2∠6,

∴∠5=∠6.

又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,

∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,

∴∠AEB=60°.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,DE垂直平分AB,分別交AB,BC于點(diǎn)D,E,MN垂直平分AC,分別交ACBC于點(diǎn)M,N.

(1)如圖,若BAC = 110°,求EAN的度數(shù);

(2)如圖,若BAC =80°,求EAN的度數(shù);

(3)BAC = α(α ≠ 90°),直接寫出用α表示EAN大小的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天壇是明清兩代皇帝每年祭天和祈禱五谷豐收的地方,以其嚴(yán)謹(jǐn)?shù)慕ㄖ季帧⑵嫣氐慕ㄖ䴓?gòu)造和瑰麗的建筑裝飾著稱于世,被列為世界文化遺產(chǎn).

小惠同學(xué)到天壇公園參加學(xué)校組織的綜合實(shí)踐活動(dòng),她分別以正東,正北方向?yàn)?/span>x軸,y軸的正方向建立了平面直角坐標(biāo)系描述各景點(diǎn)的位置.

小惠:百花園在原點(diǎn)的西北方向;表示回音壁的點(diǎn)的坐標(biāo)為

請(qǐng)依據(jù)小惠同學(xué)的描述回答下列問題:

請(qǐng)?jiān)趫D中畫出小惠同學(xué)建立的平面直角坐標(biāo)系;

表示無梁殿的點(diǎn)的坐標(biāo)為______;

表示雙環(huán)萬壽亭的點(diǎn)的坐標(biāo)為______;

將表示祈年殿的點(diǎn)向右平移2個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到表示七星石的點(diǎn),那么表示七星石的點(diǎn)的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AEC△DFB中,∠E∠F,點(diǎn)AB,C,D在同一直線上,有如下三個(gè)關(guān)系式:①AE∥DF②ABCD,③CEBF.

(1)請(qǐng)用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫出你認(rèn)為正確的所有命題(用序號(hào)寫出命題書寫形式:如果,那么”);

(2)選擇(1)中你寫出的一個(gè)命題,說明它正確的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E
(1)求直線BC的解析式;
(2)當(dāng)線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c (a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為 (一1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;③3a+c>0;④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;⑤若(﹣ ,y1),( ,y2)是拋物線上兩點(diǎn),則y1<y2
其中結(jié)論正確的個(gè)數(shù)是(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有60個(gè)工人,生產(chǎn)甲、乙兩種零件,每人每天平均能生產(chǎn)甲種零件24個(gè)或乙種零件12個(gè)已知每2個(gè)甲種零件和3個(gè)乙種零件配成一套,問應(yīng)分配多少人生產(chǎn)甲種零件,多少人生產(chǎn)乙種零件,才能使每天生產(chǎn)的這兩種零件剛好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名同學(xué)中選拔一人參加中華好詩詞大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,86,82,85,83;乙:88,79,90,81,72.

請(qǐng)回答下列問題:

(1)甲成績(jī)的平均數(shù)是______,乙成績(jī)的平均數(shù)是______;

(2)經(jīng)計(jì)算知=6,=42,你認(rèn)為選誰參加比賽更合適,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案