【題目】某農(nóng)場要建一個飼養(yǎng)場(長方形,飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長60米,設飼養(yǎng)場(長方形的寬為米.

1)求飼養(yǎng)場的長(用含的代數(shù)式表示).

2)若飼養(yǎng)場的面積為,求的值.

3)當為何值時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達到的最大面積為多少?

【答案】1米;(215;(3)當12時,飼養(yǎng)場的面積最大,最大面積為

【解析】

1)根據(jù)題意和圖形,可以用含的代數(shù)式表示出的長;

2)根據(jù)長方形的面積計算公式可以得到相應的方程,從而可以得到的值,注意墻最大可用長度為27米;

3)根據(jù)題意可以得到的函數(shù)關系式,然后根據(jù)二次函數(shù)的性質和的取值范圍,解答即可.

解:(1)由圖可得,的長是(米,

的長是米;

2)令,解得,,,

,得,

的值是15;

3)設飼養(yǎng)場的面積是,則

,得,

時,取得最大值,此時,

答:當12時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達到的最大面積為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,∠ABC90°,將△ABC繞點B逆時針旋轉90°后,點A的對應點為點D,點C的對應點為點E,直線DE與直線AC交于點F,連接FB

1)如圖1,當∠BAC45°時,

①求證:DFAC;

②求∠DFB的度數(shù);

2)如圖2,當∠BAC45°時,

①請依題意補全圖2

②用等式表示線段FC,FBFE之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對角線ACBD交于O點,將直線AC繞點O順時針旋轉,分別交BC,AD于點EF

1)求證:當旋轉角為90°時,四邊形ABEF是平行四邊形;

2)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖, 是邊長為3cm的等邊三角形,動點PQ同時從A、B兩點出發(fā),分別沿ABBC方向勻速移動,它們的速度都是,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間,解答下列各問題:

經(jīng)過秒時,求的面積;

t為何值時, 是直角三角形?

是否存在某一時刻t,使四邊形APQC的面積是面積的三分之二?如果存在,求出t的值;不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,中,,以為直徑的⊙O于點,

于點

1)求證:⊙O的切線;

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠C = 90°,AD是∠BAC的角平分線.

(1)請尺規(guī)作圖:作⊙O,使圓心OAB上,且A點在圓⊙O上.(不寫作法,保留作圖痕跡)

(2)判斷直線BC與所作⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于點F.

(1)求證:△ABE∽△DEF;

(2)求CF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學5次數(shù)學選拔賽的成績統(tǒng)計如下表,他們5次考試的總成績相同,請同學們完成下列問題:

1

2

3

4

5

甲成績

90

40

70

40

60

乙成績

70

50

70

70

1)統(tǒng)計表中,求的值,甲同學成績的極差為多少;

2)小穎計算了甲同學的成績平均數(shù)為60,方差是[(9060)2+(4060)2+(7060)2+(4060)2+(6060)2]360.

請你求出乙同學成績的平均數(shù)和方差;

3)從平均數(shù)和方差的角度分析,甲乙兩位同學誰的成績更穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(概念認知):

城市的許多街道是相互垂直或平行的,因此,往往不能沿直線行走到達目的地,只能按直角拐彎的方式行走.可以按照街道的垂直和平行方向建立平面直角坐標系xOy,對兩點A(,)和B(,),用以下方式定義兩點間距離:d(A,B)=

(數(shù)學理解):

1)①已知點A(﹣2,1),則d(O,A)= ;②函數(shù)(0x2)的圖像如圖①所示,B是圖像上一點,d(O,B)=3,則點B的坐標是

2)函數(shù)(x0)的圖像如圖②所示,求證:該函數(shù)的圖像上不存在點C,使d(OC)=3

3)函數(shù)(x0)的圖像如圖③所示,D是圖像上一點,求d(O,D)的最小值及對應的點D的坐標.

(問題解決):

4)某市要修建一條通往景觀湖的道路,如圖④,道路以M為起點,先沿MN方向到某處,再在該處拐一次直角彎沿直線到湖邊,如何修建能使道路最短?(要求:建立適當?shù)钠矫嬷苯亲鴺讼担嫵鍪疽鈭D并簡要說明理由)

查看答案和解析>>

同步練習冊答案