【題目】若點Aa,4)與點B(﹣3,b)關(guān)于原點成中心對稱,則a+b_____

【答案】-1

【解析】

直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,進(jìn)而得出答案.

解:∵點Aa4)與點B(﹣3,b)關(guān)于原點成中心對稱,

a3,b=﹣4,

a+b3+(﹣4)=﹣1

故答案為:﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點,且△ABM≌△DCM;E、F分別是線段BM、CM的中點.
(1)求證:平行四邊形ABCD是矩形.
(2)求證:EF與MN互相垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016四川省資陽市)已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.

①當(dāng)點F為M′O′的中點時,求t的值;

②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2x2向上平移3個單位,再向右平移2個單位,得到的拋物線是( 。

A.y2x+223B.y2x+22+3

C.y2x223D.y2x22+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)甲、乙兩位教師先后從學(xué)校出發(fā),到距學(xué)校10km的培訓(xùn)中心參加新教材培訓(xùn)學(xué)習(xí),圖中I , I分別表示甲、乙兩位教師從學(xué)校到培訓(xùn)中心所走的路程S(km)隨時間t(分鐘)變化的函數(shù)圖象.
(1)求甲、乙兩位教師的平均速度各是多少?
(2)求乙出發(fā)后追上甲所用的時間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.

(1)求該拋物線的解析式;

(2)若點E為x軸下方拋物線上的一動點,當(dāng)S△ABE=S△ABC時,求點E的坐標(biāo);

(3)在(2)的條件下,拋物線上是否存在點P,使BAP=CAE?若存在,求出點P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-4,2,-1,3這四個數(shù)中,最小的數(shù)是()

A. -4 B. 2 C. -1 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線與y軸交于點D.

(1)求拋物線的解析式;

(2)證明:△DBO∽△EBC;

(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各題正確的是(
A.由7x=4x﹣3移項得7x﹣4x=3
B.由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7去括號、移項、合并同類項得x=5

查看答案和解析>>

同步練習(xí)冊答案