【題目】如圖,拋物線(a≠0)的頂點(diǎn)為E,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且BO=OC=3AO,直線與y軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點(diǎn)坐標(biāo),若不存在,請說明理由.
【答案】(1);(2)證明見解析;(3)P(1,﹣1)或P(1,)或P(1,﹣)或P(1,)或P(1,).
【解析】
試題分析:(1)先求出點(diǎn)C的坐標(biāo),在由BO=OC=3AO,確定出點(diǎn)B,A的坐標(biāo),最后用待定系數(shù)法求出拋物線解析式;
(2)先求出點(diǎn)A,B,C,D,E的坐標(biāo),從而求出BC,BE,CE,OD,OB,BD,求出比值,得到得出結(jié)論;
(3)設(shè)出點(diǎn)P的坐標(biāo),表示出PB,PC,求出BC,分三種情況計(jì)算即可.
試題解析:(1)∵拋物線,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵該拋物線與x軸交于A、B兩點(diǎn),∴,∴,∴拋物線解析式為;
(2)由(1)知,拋物線解析式為=,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=,BE=,CE=,∵直線與y軸交于點(diǎn)D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO;
(3)存在,理由:設(shè)P(1,m),∵B(3,0),C(0,﹣3),∴BC=,PB=,PC=,∵△PBC是等腰三角形,∴分三種情況討論:
①當(dāng)PB=PC時(shí),∴=,∴m=﹣1,∴P(1,﹣1);
②當(dāng)PB=BC時(shí),∴=,∴m=,∴P(1,)或P(1,﹣);
③當(dāng)PC=BC時(shí),∴=,∴m=,∴P(1,)或P(1,);
綜上所述:符合條件的P點(diǎn)坐標(biāo)為P(1,﹣1)或P(1,)或P(1,﹣)或P(1,)或P(1,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△A′B′C′關(guān)于直線m對稱。
(1)結(jié)合圖形指出對稱點(diǎn).
(2)連接A、A′,直線m與線段AA′有什么關(guān)系?
(3)延長線段AC與A′C′,它們的交點(diǎn)與直線m有怎樣的關(guān)系?其它對應(yīng)線段(或其延長線)的交點(diǎn)呢?你發(fā)現(xiàn)了什么規(guī)律,請敘述出來與同伴交流。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(a,4)與點(diǎn)B(﹣3,b)關(guān)于原點(diǎn)成中心對稱,則a+b=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的標(biāo)價(jià)為200元,8折銷售仍賺40元,則商品進(jìn)價(jià)為 ( )
A. 100元 B. 120元 C. 140元 D. 160元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)圖中的全等三角形有;
(2)從你找到的全等三角形中選出其中一對加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)M為該拋物線上一動(dòng)點(diǎn),在(2)的條件下,請求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個(gè)登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動(dòng).
(1)1月1日甲與乙同時(shí)開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米?
(2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時(shí),結(jié)果兩人同時(shí)到達(dá)頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com