【題目】如圖,AB是⊙O的直徑,點(diǎn)DAB延長線上的一點(diǎn),點(diǎn)C在⊙O上,且ACCD,∠ACD120°

1)求證:CD是⊙O的切線;

2)若⊙O的半徑為3,求圖中陰影部分的面積.

【答案】1)證明見解析;(2

【解析】

1)連接OC.只需證明∠OCD90°.根據(jù)等腰三角形的性質(zhì)即可證明;

2)陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.

1)證明:連接OC

ACCD,∠ACD120°,

∴∠A=∠D30°

OAOC

∴∠ACO=∠A30°

∴∠OCD=∠ACD﹣∠ACO90°.即OCCD,

CD是⊙O的切線.

2)解:∵∠A30°,

∴∠COB2A60°

S扇形BOC,

RtOCD中,CDOC,

∴圖中陰影部分的面積=- S扇形BOC=

∴圖中陰影部分的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形,下列條件中,不能判定這個(gè)平行四邊形為菱形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和小黃同學(xué)在實(shí)驗(yàn)室中調(diào)制體積相同但濃度不同的化學(xué)反應(yīng)試劑溶液,已知小亮和小黃調(diào)制的溶液濃度分別為、.現(xiàn)將小亮調(diào)制的溶液的倒入小黃調(diào)制的溶液中,混合均勻后再由小黃調(diào)制的溶液倒回小亮調(diào)制的溶液使其體積恢復(fù)到原體積,則互摻后小亮、小黃調(diào)制的溶液含純量的差與互摻前小亮、小黃調(diào)制的溶液含純量的差之比為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①表示一個(gè)時(shí)鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn)A,當(dāng)鐘面顯示3點(diǎn)30分時(shí),分針垂直于桌面,A點(diǎn)距桌面的高度為10cm.圖②表示當(dāng)鐘面顯示3點(diǎn)45分時(shí),A點(diǎn)距桌面的高度為16cm,若鐘面顯示3點(diǎn)55分時(shí),A點(diǎn)距桌面的高度為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)D在邊AB上,且,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上做正方形,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為秒,正方形重疊部分的面積為

1)用含有的代數(shù)式表示線段的長.

2)當(dāng)點(diǎn)落在的邊上時(shí),求的值.

3)求的函數(shù)關(guān)系式.

4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),做點(diǎn)N關(guān)于CD的對(duì)稱點(diǎn),當(dāng)的某一個(gè)頂點(diǎn)的連線平分的面積時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛 的時(shí)間為t(單位:小時(shí)),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;②出發(fā)1.2小時(shí)時(shí),乙比甲多行駛了50千米;③乙到終點(diǎn)時(shí),甲離終點(diǎn)還有60千米;④甲的速度是乙速度的一半.其中,正確結(jié)論是 _____________ .(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2分別是的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長均為,線段的端點(diǎn)在小正方形的頂點(diǎn)上,請?jiān)趫D1、圖2中各畫一個(gè)圖形,分別滿足以下要求:

1)在圖1中畫一個(gè)菱形(非正方形),所畫菱形各頂點(diǎn)必須在小正方形的頂點(diǎn)上;

2)在圖2中畫一個(gè)以線段為一邊的等腰,所畫等腰三角形各頂點(diǎn)必須在小正方形的頂點(diǎn)上,且所畫等腰三角形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形中,,.點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合),,與邊相交于點(diǎn),聯(lián)結(jié)交對(duì)角線于點(diǎn).設(shè)

1)求證:是等邊三角形;

2)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

3)點(diǎn)是線段的中點(diǎn),聯(lián)結(jié),當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019312日是第41個(gè)植樹節(jié),某單位積極開展植樹活動(dòng),決定購買甲、乙兩種樹苗,用800元購買甲種樹苗的棵數(shù)與用680元購買乙種樹苗的棵數(shù)相同,乙種樹苗每棵比甲種樹苗每棵少6元.

1)求甲種樹苗每棵多少元?

2)若準(zhǔn)備用3800元購買甲、乙兩種樹苗共100棵,則至少要購買乙種樹苗多少棵?

查看答案和解析>>

同步練習(xí)冊答案