【題目】如圖,在△ABC中,OA=OB=6,∠O=120°,以點(diǎn)O為圓心的⊙O和底邊AB相切于點(diǎn)C,則陰影部分的面積為

【答案】9 ﹣3π
【解析】解:連接OC,
∵AB為圓O的切線,
∴OC⊥AB,
∵OA=OB=6,
∴∠AOC=∠BOC= ∠AOB=60°,
∴∠A=∠B=30°,AC=BC= =3 ,
∴OC= 0A=3,
則S陰影= ABOC﹣S扇形= ×6 ×3﹣ =9 ﹣3π.
所以答案是:9 ﹣3π.
【考點(diǎn)精析】關(guān)于本題考查的切線的性質(zhì)定理和扇形面積計(jì)算公式,需要了解切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 中,AB=AC,∠BAC 和∠ACB 的平分線相交于點(diǎn)D,∠ADC=125°,那么∠CAB 的大小是_________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC經(jīng)過一次平移到△DFE的位置,請(qǐng)回答下列問題:

(1)點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)__________,D=__________,BC=__________;

(2)連接CE,那么平移的方向就是__________的方向,平移的距離就是線段__________的長(zhǎng)度;

(3)連接AD,BF,BE,與線段CE相等的線段有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點(diǎn)E為矩形ABCD邊AD的中點(diǎn),在矩形ABCD的四個(gè)頂點(diǎn)處都有定位儀,可監(jiān)測(cè)運(yùn)動(dòng)員的越野進(jìn)程,其中一位運(yùn)動(dòng)員P從點(diǎn)B出發(fā),沿著B﹣E﹣D的路線勻速行進(jìn),到達(dá)點(diǎn)D.設(shè)運(yùn)動(dòng)員P的運(yùn)動(dòng)時(shí)間為t,到監(jiān)測(cè)點(diǎn)的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來(lái)源監(jiān)測(cè)點(diǎn)為( )

A.A點(diǎn)
B.B點(diǎn)
C.C點(diǎn)
D.D點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.

從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來(lái)三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.

理解概念

如圖1,在中,,,請(qǐng)寫出圖中兩對(duì)“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF、BG、DH 都垂直于 FH,AE⊥AB 且 AE=AB,BC⊥CD 且 BC=CD,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù),計(jì)算圖中陰影部分的面積 S 是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,茬四邊形ABCD中,AD∥BC,E是BC的中點(diǎn),AC平分∠BCD,且AC⊥AB,接DE,交AC于F.
(1)求證:AD=CE;
(2)若∠B=60°,試確定四邊形ABED是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:( 1﹣(π﹣3.14)0 +2sin60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一動(dòng)點(diǎn),點(diǎn)D,E分別是ACBC中點(diǎn).

1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm

2)若AC=4cm,求DE的長(zhǎng);

3)試說(shuō)明無(wú)論AC取何值(不超過12cm),DE的長(zhǎng)不變;

4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點(diǎn)C畫射線OC.OD,OE分別平分∠AOC和∠BOC.試說(shuō)明∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).

查看答案和解析>>

同步練習(xí)冊(cè)答案