【題目】小剛根據(jù)學(xué)習(xí)“數(shù)與式”的經(jīng)驗(yàn),想通過由“特殊到一般”的方法探究下面二次根式的運(yùn)算規(guī)律.

以下是小剛的探究過程,請補(bǔ)充完整;

(1)具體運(yùn)算,發(fā)現(xiàn)規(guī)律.

特例1:;特例2:;特例3:;特例4:   (舉一個符合上述運(yùn)算特征的例子)

(2)觀察、歸納,得出猜想.

如果n為正整數(shù),用含n的式子表示這個運(yùn)算規(guī)律;   

(3)證明猜想,確認(rèn)猜想的正確性.

【答案】(1);(2);(3)見解析.

【解析】

(1)根據(jù)題中規(guī)律即可得出結(jié)論;

(2)根據(jù)題意找出規(guī)律即可;

(3)根據(jù)n是正整數(shù),證明即可.

解:(1)由例子可得,

特例4為:

故答案為:;

(2)如果n為正整數(shù),用含n的式子表示這個運(yùn)算規(guī)律:,

故答案為:;

(3)證明:∵n是正整數(shù),

==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?

(探究)為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.

探究一用四邊形的對角線把四邊形分割成2個三角形,共有多少種不同的分割方案?

如圖,圖,顯然,只有2種不同的分割方案.所以,P4=2.

探究二:用五邊形的對角線把五邊形分割成3個三角形,共有多少種不同的分割方案?

不妨把分割方案分成三類:

1類:如圖③,用A,EB連接,先把五邊形分割轉(zhuǎn)化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.

2類:如圖④,用A,EC連接,把五邊形分割成3個三角形,有1種不同的分割方案,可視為種分割方案.

3圖⑤,用A,ED連接,先把五邊形分割轉(zhuǎn)化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.

所以,P5 =++=()

探究三:用六邊形的對角線把六邊形分割成4個三角形,共有多少種不同的分割方案?

不妨把分割方案分成四類:

1類:如圖⑥,用A,F(xiàn)B連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形,再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.

2類:如圖⑦,用A,F(xiàn)C連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案

3類:如圖⑧,用A,F(xiàn)D連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.

4類:如圖⑨,用A,F(xiàn)E連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形.再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.

所以,P6 =()

探究四:用七邊形的對角線把七邊形分割成5個三角形,則P7P6的關(guān)系為:

P7 = ,共有_____種不同的分割方案.……

(結(jié)論)用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?(直接寫出PnPn -1的關(guān)系式,不寫解答過程).

(應(yīng)用)用八邊形的對角線把八邊形分割成6個三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”假期,某火車客運(yùn)站旅客流量不斷增大,旅客往往需要長時間排隊等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開始檢票時,有640人排隊檢票.檢票開始后,仍有旅客繼續(xù)前來排隊檢票進(jìn)站.設(shè)旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時,每分鐘候車室新增排隊檢票進(jìn)站16人,每分鐘每個檢票口檢票14人.已知檢票的前a分鐘只開放了兩個檢票口.某一天候車室排隊等候檢票的人數(shù)y(人)與檢票時間x(分鐘)的關(guān)系如圖所示.

(1)求a的值.
(2)求檢票到第20分鐘時,候車室排隊等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊的旅客都能檢票進(jìn)站,以便后來到站的旅客隨到隨檢,問檢票一開始至少需要同時開放幾個檢票口?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點(diǎn)在B點(diǎn)的左側(cè))與y軸交于點(diǎn)C.

(1)如圖1,連接AC、BC,若△ABC的面積為3時,求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PC,若∠BCP=2∠ABC時,求點(diǎn)P的橫坐標(biāo);
(3)如圖3,在(2)的條件下,點(diǎn)F在AP上,過點(diǎn)P作PH⊥x軸于H點(diǎn),點(diǎn)K在PH的延長線上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,連接KB并延長交拋物線于點(diǎn)Q,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏同學(xué)想測量一棵大樹的高度.她站在B處仰望樹頂,測得仰角為30°,再往大樹的方向前進(jìn)4m,測得仰角為60°,已知小敏同學(xué)身高(AB)為1.6m,則這棵樹的高度為( )(結(jié)果精確到0.1m, ≈1.73).

A.3.5m
B.3.6m
C.4.3m
D.5.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天封塔歷史悠久,是寧波著名的文化古跡.如圖,從位于天封塔的觀測點(diǎn)C測得兩建筑物底部A,B的俯角分別為45°和60°,若此觀測點(diǎn)離地面的高度為51米,A,B兩點(diǎn)在CD的兩側(cè),且點(diǎn)A,D,B在同一水平直線上,求A,B之間的距離(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于點(diǎn),.點(diǎn)的坐標(biāo)為(,0),點(diǎn) 的坐標(biāo)為(,0).

(1)求的值;

(2)若點(diǎn),)是第二象限內(nèi)的直線上的一個動點(diǎn).當(dāng)點(diǎn)運(yùn)動過程中,試寫出的面積的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)探究:當(dāng)運(yùn)動到什么位置時,的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育商店購進(jìn)一批甲、乙兩種足球,已知3個甲種足球的進(jìn)價與2個乙種足球的進(jìn)價的和為142元,2個甲種足球的進(jìn)價與4個乙種足球的進(jìn)價的和為164元.
(1)求每個甲、乙兩種足球的進(jìn)價分別是多少?
(2)如果購進(jìn)甲種足球超過10個,超出部分可以享受7折優(yōu)惠.商場決定在甲、乙兩種足球選購其中一種,且數(shù)量超過10個,試幫助體育商場判斷購進(jìn)哪種足球省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,3)、(﹣4,0),

(1)將△AOB繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O,B對應(yīng)點(diǎn)分別是E,F(xiàn),請在圖中畫出△AEF,并寫出E、F的坐標(biāo);
(2)以O(shè)點(diǎn)為位似中心,將△AEF作位似變換且縮小為原來的 ,在網(wǎng)格內(nèi)畫出一個符合條件的△A1E1F1

查看答案和解析>>

同步練習(xí)冊答案