【題目】n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?

(探究)為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.

探究一用四邊形的對角線把四邊形分割成2個三角形,共有多少種不同的分割方案?

如圖,圖,顯然,只有2種不同的分割方案.所以,P4=2.

探究二:用五邊形的對角線把五邊形分割成3個三角形,共有多少種不同的分割方案?

不妨把分割方案分成三類:

1類:如圖③,用A,EB連接,先把五邊形分割轉(zhuǎn)化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.

2類:如圖④,用A,EC連接,把五邊形分割成3個三角形,有1種不同的分割方案,可視為種分割方案.

3圖⑤,用A,ED連接,先把五邊形分割轉(zhuǎn)化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.

所以,P5 =++=()

探究三:用六邊形的對角線把六邊形分割成4個三角形,共有多少種不同的分割方案?

不妨把分割方案分成四類:

1類:如圖⑥,用A,F(xiàn)B連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形,再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.

2類:如圖⑦,用A,F(xiàn)C連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案

3類:如圖⑧,用A,F(xiàn)D連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.

4類:如圖⑨,用A,F(xiàn)E連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形.再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.

所以,P6 =()

探究四:用七邊形的對角線把七邊形分割成5個三角形,則P7P6的關(guān)系為:

P7 = ,共有_____種不同的分割方案.……

(結(jié)論)用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?(直接寫出PnPn -1的關(guān)系式,不寫解答過程).

(應(yīng)用)用八邊形的對角線把八邊形分割成6個三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫出解答過程)

【答案】18;42;;132

【解析】

根據(jù)題意找到P4,P5,P6之間的關(guān)系,進(jìn)行猜想,然后驗證,寫出答案.

P4=2,P5 =,P6= ,根據(jù)規(guī)律可得P7 ===42,進(jìn)一步推導(dǎo)規(guī)律: ,根據(jù)公式,P8==132.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】曲靖市某商場投入19200元資金購進(jìn)甲、乙兩種飲料共600箱,飲料的成本價和銷售價如表所示:

類別/單價

成本價

銷售價(元/箱)

24

36

36

52

(1)該商場購進(jìn)甲、乙兩種飲料各多少箱?

(2)全部售完600箱飲料,該商場共獲得利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:

乙校成績統(tǒng)計表

分?jǐn)?shù)/分

人數(shù)/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;

(2)請你將圖②補(bǔ)充完整;

(3)求乙校成績的平均分;

(4)經(jīng)計算知s2=135,s2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B,C,E,F(xiàn)在一直線上,AB∥DC,DE∥GF,∠B=∠F=72°,則∠D=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E,F(xiàn)分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點B,C分別落在B′,C′處,線段EC′與線段AF交于點G,連接DG,B′G.
求證:
(1)∠1=∠2;
(2)DG=B′G.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏在作⊙O的內(nèi)接正五邊形時,先做了如下幾個步驟:
(i)作⊙O的兩條互相垂直的直徑,再作OA的垂直平分線交OA于點M,如圖1;
(ii)以M為圓心,BM長為半徑作圓弧,交CA于點D,連結(jié)BD,如圖2.若⊙O的半徑為1,則由以上作圖得到的關(guān)于正五邊形邊長BD的等式是( )

A.BD2= OD
B.BD2= OD
C.BD2= OD
D.BD2= OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,AD=4,CE平分∠ACB交AD于點E.以線段CE為弦作⊙O,且圓心O落在AC上,⊙O交AC于點F,交BC于點G.
(1)求證:AD與⊙O的相切;
(2)若點G為CD的中點,求⊙O的半徑;
(3)判斷點E能否為AD的中點,若能則求出BC的長,若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校八年級共有三個班,都參加了學(xué)校舉行的書法繪畫大賽,三個班根據(jù)初賽成績分別選出了10名同學(xué)參加決賽,這些選手的決賽成績(滿分100)如下表所示:

決賽成績(單位:分)

八年1

80  86  88  80  88  99  80  74  91  89

八年2

85  85  87  97  85  76  88  77  87  88

八年3

82  80  78  78  81  96  97  87  92  84

解答下列問題:

(1)請?zhí)顚懴卤恚?/span>

平均數(shù)()

眾數(shù)()

中位數(shù)()

 八年1

85.5

   

87

 八年2

85.5

85

   

 八年3

   

78

83

(2)請從以下兩個不同的角度對三個班級的決賽成績進(jìn)行

從平均數(shù)和眾數(shù)相結(jié)合看(分析哪個班級成績好些).

從平均數(shù)和中位數(shù)相結(jié)合看(分析哪個班級成績好些).

(3)如果在每個班級參加決賽的選手中分別選出3人參加總決賽,你認(rèn)為哪個班級的實力更強(qiáng)一些?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛根據(jù)學(xué)習(xí)“數(shù)與式”的經(jīng)驗,想通過由“特殊到一般”的方法探究下面二次根式的運(yùn)算規(guī)律.

以下是小剛的探究過程,請補(bǔ)充完整;

(1)具體運(yùn)算,發(fā)現(xiàn)規(guī)律.

特例1:;特例2:;特例3:;特例4:   (舉一個符合上述運(yùn)算特征的例子)

(2)觀察、歸納,得出猜想.

如果n為正整數(shù),用含n的式子表示這個運(yùn)算規(guī)律;   

(3)證明猜想,確認(rèn)猜想的正確性.

查看答案和解析>>

同步練習(xí)冊答案