【題目】如圖,四邊形ABCD,AB=AD=2,A=60°,BC=,CD=3

1)求∠ADC的度數(shù);

2)求四邊形ABCD的面積

【答案】1150° 2

【解析】試題分析:

(1)將△ABC繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,則有等邊△ACC′,點(diǎn)D到等邊△ACC′的距離符合勾股定理的逆定理,故將△ADC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,即可求解.

(2)將四邊形ABCD分割為等邊三角形和直角三角形,分別求出等邊三角形和直角三角形的面積即可.

試題解析:

(1)如圖,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,構(gòu)成三角形ACC′,把△ADC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,構(gòu)成△AD′C.

由旋轉(zhuǎn)的性質(zhì)可知,ACCADD是等邊三角形,且DC′=BC=,AD′=DD′=AD=2D′C′=DC=3,ADC=∠ADC.

因?yàn)?/span>DD′2=4,D′C′2=9,DC′2=13,所以DD′2+D′C′2=DC′2.

所以△DD′C′是直角三角形,所以∠DD′C′=90°,

因?yàn)?/span>∠AD′D=60°,所以∠AD′C=60°+90°=150°.

所以∠ADC=150°.

(2)(1),S四邊形ABCD=S四邊形ADC′D′.

S四邊形ADC′D′=S等邊ADD+SRt△DD′C==3+.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),3秒后,兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知點(diǎn)B的速度是點(diǎn)A的速度的4倍(速度單位:?jiǎn)挝婚L(zhǎng)度/秒).

1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出AB兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)3秒時(shí)的位置;

2)若AB兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),幾秒時(shí),原點(diǎn)恰好處在點(diǎn)A、點(diǎn)B的正中間?

3)若AB兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從B點(diǎn)位置出發(fā)向A點(diǎn)運(yùn)動(dòng),當(dāng)遇到A點(diǎn)后,立即返回向B點(diǎn)運(yùn)動(dòng),遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動(dòng),如此往返,直到B點(diǎn)追上A點(diǎn)時(shí),C點(diǎn)立即停止運(yùn)動(dòng).若點(diǎn)C一直以20單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),那么點(diǎn)C從開(kāi)始運(yùn)動(dòng)到停止運(yùn)動(dòng),行駛的路程是多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的面積是60,請(qǐng)完成下列問(wèn)題:

(1)如圖①,AD是△ABCBC邊上的中線(xiàn),則△ABD的面積 _ACD的面積(選填“>”“<”“=”).

(2)如圖②,CD,BE分別是△ABCAB,AC邊上的中線(xiàn)求四邊形ADOE的面積可以用如下方法:連接AO,AD=DB得:SADO=SBDO同理:SCEO=SAEO,設(shè)SADO=x,SCEO=y(tǒng),SBDO=x,SAEO=y(tǒng),由題意得:SABESABC=30,SADCSABC=30,可列方程組為: ,通過(guò)解這個(gè)方程組可得四邊形ADOE的面積為 .

(3)如圖③,ADDB=13,CEAE=12,請(qǐng)你計(jì)算四邊形ADOE的面積,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小明,小紅等同學(xué)隨父母一同去某景點(diǎn)旅游,在購(gòu)買(mǎi)門(mén)票時(shí),小明和小紅有圖1所示的對(duì)話(huà),根據(jù)圖2的門(mén)票票價(jià)和圖1所示的對(duì)話(huà)內(nèi)容完成下列問(wèn)題.

(1)他們一共去了幾個(gè)成人幾個(gè)學(xué)生?

(2)請(qǐng)你幫他們算一算,用哪種方式買(mǎi)票更省錢(qián),省多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),點(diǎn)C在第一象限,對(duì)角線(xiàn)BD與x軸平行.直線(xiàn)y=x+4與x軸、y軸分別交于點(diǎn)E,F(xiàn).將菱形ABCD沿x軸向左平移k個(gè)單位,當(dāng)點(diǎn)C落在EOF的內(nèi)部時(shí)(不包括三角形的邊),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種新運(yùn)算”:ab=2a﹣ab,比如1(﹣3)=2×1﹣1×(﹣3)=5

(1)求(﹣2)3的值;

(2)若(﹣3)x=(x+1)5,求x的值;

(3)若x1=2(1y),求代數(shù)式x+y+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界讀書(shū)日,新華書(shū)店矩形購(gòu)書(shū)優(yōu)惠活動(dòng):一次性購(gòu)書(shū)不超過(guò)100元,不享受打折優(yōu)惠;一次性購(gòu)書(shū)超過(guò)100元但不超過(guò)200元一律八折;一次性購(gòu)書(shū)200元以上一律打六折.小麗在這次活動(dòng)中,兩次購(gòu)書(shū)總共付款190.4元,第二次購(gòu)書(shū)原價(jià)是第一次購(gòu)書(shū)原價(jià)的3倍,那么小麗這兩次購(gòu)書(shū)原價(jià)的總和是_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:

將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過(guò)點(diǎn)DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請(qǐng)參照上述證法,利用圖2完成下面的證明.

將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,C=90°,沿過(guò)B點(diǎn)的一條直線(xiàn)BE折疊這個(gè)三角形, 使C點(diǎn)與AB邊上的一點(diǎn)D重合.

(1)當(dāng)A滿(mǎn)足什么條件時(shí),點(diǎn)D恰為AB的中點(diǎn)?寫(xiě)出一個(gè)你認(rèn)為適當(dāng)?shù)臈l件,并利用此條件證明DAB的中點(diǎn);

(2)在(1)的條件下,若DE=1,求ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案