【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車難問題,建筑設(shè)計(jì)師提供了樓頂停車場的設(shè)計(jì)示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

【答案】解:∵AC//ME,∴∠CAB=∠AEM, 在Rt△ABC中,∠CAB=28°,AC=9m,
∴BC=ACtan28°≈9×0.53=4.77(m),
∴BD=BC﹣CD=4.77﹣0.5=4.27(m),
在Rt△BDF中,∠BDF+∠FBD=90°,
在Rt△ABC中,∠CAB+∠FBC=90°,
∴∠BDF=∠CAB=28°,
∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),
答:坡道口的限高DF的長是3.8m
【解析】首先根據(jù)AC//ME,可得∠CAB=∠AE28°,再根據(jù)三角函數(shù)計(jì)算出BC的長,進(jìn)而得到BD的長,進(jìn)而求出DF即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A是以BC為直徑的圓上的一點(diǎn),BE是⊙O的切線,CA的延長線與BE交于E點(diǎn),F(xiàn)是BE的中點(diǎn),延長AF,CB交于點(diǎn)P.

(1)求證:PA是⊙O的切線;
(2)若AF=3,BC=8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38 ,然后在式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39

得:3SS=39-1,即2S=39-1,

S=.

得出答案后,愛動(dòng)腦筋的張紅想:如果把3換成字母m(m0且m1),能否求出1+m+m2+m3+m4+m2016的值?如能求出,其正確答案是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90,BD平分∠ABC,交ACD,點(diǎn)OEF分別在BD、BC、

AC上,且四邊形OECF是正方形.

(1)求證:點(diǎn)O在∠BAC的平分線上;

(2)若AC=5,BC=12,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)CA的距離是點(diǎn)CB的距離2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn).

1)如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(A,B)的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D______A,B)的好點(diǎn),但點(diǎn)D______B,A)的好點(diǎn).(請(qǐng)?jiān)跈M線上填是或不是)知識(shí)運(yùn)用:

2)如圖2MN為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為4,點(diǎn)N所表示的數(shù)為-2.?dāng)?shù)______所表示的點(diǎn)是(M,N)的好點(diǎn);

3)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為-20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以4個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)經(jīng)過______秒時(shí),P、AB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1有兩條長度相等的相交線段AB、CD,它們相交的銳角中有一個(gè)角為60°,為了探究AD、CBCD(或AB)之間的關(guān)系,小亮進(jìn)行了如下嘗試:

(1)在其他條件不變的情況下使得ADBC,如圖2,將線段AB沿AD方向平移AD的長度,得到線段DE,然后聯(lián)結(jié)BE,進(jìn)而利用所學(xué)知識(shí)得到AD、CBCD(或AB)之間的關(guān)系:   ;(直接寫出結(jié)果)

(2)根據(jù)小亮的經(jīng)驗(yàn),請(qǐng)對(duì)圖1的情況(ADCB不平行)進(jìn)行嘗試,寫出AD、CBCD(或AB)之間的關(guān)系,并進(jìn)行證明;

(3)綜合(1)、(2)的證明結(jié)果,請(qǐng)寫出完整的結(jié)論:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD 中,點(diǎn)P在對(duì)角線AC上,過PEFAB,HGAD,記四邊形BFPH的面積為S1,四邊形DEPG的面積為S2,則S1S2的大小關(guān)系是

A. S1>S2 B. S1=S2 C. S1<S2 D. 無法判斷

查看答案和解析>>

同步練習(xí)冊(cè)答案