【題目】已知:如圖,一次函數(shù)y=kx+3的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B. 一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C. 點(diǎn)D,且S△DBP=27,
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式
【答案】(1)(0,3);(2)y=x+3,y=
【解析】
(1)根據(jù)一次函數(shù)與y軸的交點(diǎn),從而得出D點(diǎn)的坐標(biāo).
(2)根據(jù)在Rt△COD和Rt△CAP中,,OD=3,再根據(jù)S△DBP=27,從而得
(1)∵一次函數(shù)y=kx+3與y軸相交,
∴令x=0,解得y=3,得D的坐標(biāo)為(0,3);
(2)∵OD⊥OA,AP⊥OA,
∠DCO=∠ACP,
∠DOC=∠CAP=90°,
∴Rt△COD∽Rt△CAP,則,OD=3,
∴AP=OB=6,
∴DB=OD+OB=9,
在Rt△DBP中,∴ =27,
即 ,
∴BP=6,故P(6,6),
把P坐標(biāo)代入y=kx+3,得到k= ,
則一次函數(shù)的解析式為:y=x+3;
把P坐標(biāo)代入反比例函數(shù)解析式得m=36,
則反比例解析式為:y= ;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一動(dòng)點(diǎn),點(diǎn)D,E分別是AC和BC中點(diǎn).
(1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm;
(2)若AC=4cm,求DE的長(zhǎng);
(3)試說(shuō)明無(wú)論AC取何值(不超過(guò)12cm),DE的長(zhǎng)不變;
(4)如圖②,已知∠AOB=120°,過(guò)角的內(nèi)部任一點(diǎn)C畫(huà)射線OC.若OD,OE分別平分∠AOC和∠BOC.試說(shuō)明∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探索新知)
如圖1,點(diǎn)C在線段AB上,圖中共有3條線段:AB、AC和BC,若其中有一條線段的長(zhǎng)度是另一條線段長(zhǎng)度的兩倍,則稱點(diǎn)C是線段AB的“二倍點(diǎn)”.
(1)一條線段的中點(diǎn) 這條線段的“二倍點(diǎn)”;(填“是”或“不是”)
(深入研究)
如圖2,若線段AB=20cm,點(diǎn)M從點(diǎn)B的位置開(kāi)始,以每秒2cm的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒.
(2)問(wèn)t為何值時(shí),點(diǎn)M是線段AB的“二倍點(diǎn)”;
(3)同時(shí)點(diǎn)N從點(diǎn)A的位置開(kāi)始,以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),并與點(diǎn)M同時(shí)停止.請(qǐng)直接寫(xiě)出點(diǎn)M是線段AN的“二倍點(diǎn)”時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富學(xué)生課余生活,我校準(zhǔn)備開(kāi)設(shè)興趣課堂.為了了解學(xué)生對(duì)繪畫(huà)、書(shū)法、舞蹈、樂(lè)器這四個(gè)興趣小組的喜愛(ài)情況,在全校進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息尚不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中樂(lè)器部分的圓心角的度數(shù);
(3)如果我校共有1000名學(xué)生參加這4個(gè)課外興趣小組,而每個(gè)教師最多只能輔導(dǎo)本組的25名學(xué)生,估計(jì)書(shū)法興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)D重合),點(diǎn)Q是邊CD上一點(diǎn),聯(lián)結(jié)PB、PQ,且∠PBC=∠BPQ.
(1)當(dāng)QD=QC時(shí),求∠ABP的正切值;
(2)設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)解析式;
(3)聯(lián)結(jié)BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個(gè)角,并求出它的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a﹣b|;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|
(2)回答下列問(wèn)題:
①數(shù)軸上表示2和5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 ;
②數(shù)軸上表示x和﹣1的兩點(diǎn)A和B之間的距離是 ,如果|AB|=2,那么x為 ;
③代數(shù)式|x+1|+|x﹣2|取最小值時(shí),相應(yīng)的整數(shù)x的取值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形ABCD中,AB=12,BC=8,E、F分別為AB、CD的中點(diǎn),點(diǎn)P、Q從A. C同時(shí)出發(fā),在邊AD、CB上以每秒1個(gè)單位向D、B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(0<t<8).
(1)如圖1,連接PE、EQ、QF、PF,求證:無(wú)論t在0<t<8內(nèi)取任何值,四邊形PEQF總為平行四邊形;
(2)如圖2,連接PQ交CE于G,若PG=4QG,求t的值;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某時(shí)刻使得PQ⊥CE于G?若存在,請(qǐng)求出t的值:若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)M為CD中點(diǎn),將△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,則 α 與 β 之間的數(shù)量關(guān)系為( )
A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①是一塊瓷磚的圖案,用這種瓷磚來(lái)鋪設(shè)地面,如果鋪成一個(gè)2×2的正方形圖案(如圖②),其中完整的圓共有5個(gè),如果鋪成一個(gè)3×3的正方形圖案(如圖③),其中完整的圓共有13個(gè),如果鋪成一個(gè)4×4的正方形圖案(如圖④),其中完整的圓共有25個(gè),若這樣鋪成一個(gè)10×10的正方形圖案,則其中完整的圓共有( )個(gè).
A.145 B.146 C.180 D.181
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com