【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②當(dāng)x>1時(shí),y隨x的增大而減少;③m>-1;④當(dāng)a=-1時(shí),b=3;其中,判斷正確的序號(hào)是( 。
A.①②B.②③C.①③D.②③④
【答案】D
【解析】
①當(dāng)x>0時(shí),y>m+1,y可以小于0;
②由題意可得:函數(shù)圖像的對(duì)稱軸,然后根據(jù)對(duì)稱軸所在位置進(jìn)行判定即可;
③由于函數(shù)圖像于x軸有兩個(gè)交點(diǎn),根據(jù)根的判別式即可判定;
④根據(jù)二次函數(shù)圖像與一元二次方程根的關(guān)系,確定a+b,即可確定b的值.
解:①當(dāng)x=0時(shí),y=m+1;則根據(jù)圖像可得:當(dāng)x>0時(shí),y>m+1,y可以小于0,故①錯(cuò)誤;
②該函數(shù)圖像的對(duì)稱軸為x=,則當(dāng)x>1時(shí),y隨x的增大而減少,故②正確;
③由題意得-x2+2x+m+1=0的兩個(gè)不相等的解,則22-4(m+1)(-1)>0,即:4m+8>0,解得:m>-2;由于:m>-2包含m>-1,故③正確;
④根據(jù)二次函數(shù)圖像與一元二次方程根的關(guān)系,可得a、b為方程的兩個(gè)解
則a+b=;又a=-1,則b=2-(-1)=3,故④正確;
故答案為D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2-2mx-m2+4m-2的對(duì)稱軸為l,拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)判斷拋物線與x軸的交點(diǎn)情況;
(2)如圖1,當(dāng)m=1時(shí),點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),且△PCD是以PD為腰的等腰三角形,求點(diǎn)P的坐標(biāo);
(3)如圖2,直線和拋物線交于點(diǎn)A、B兩點(diǎn),與l交于點(diǎn)M,且MO=MB,點(diǎn)Q(x0,y0)在拋物線上,當(dāng)m>1時(shí),時(shí),求h的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)AB型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)AB型產(chǎn)品由4個(gè)A型裝置和3個(gè)B型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)A型裝置或3個(gè)B型裝置.工廠將所有工人分成兩組同時(shí)開始加工,每組分別加工一種裝置,并要求每天加工的A、B型裝置數(shù)量正好全部配套組成AB型產(chǎn)品.為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行A型裝置的加工,且每人每天只能加工4個(gè)A型裝置.
(1)設(shè)原來每天安排x名工人生產(chǎn)A型裝置,后來補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)
(2)請(qǐng)問至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一項(xiàng)工程,由甲、乙兩個(gè)工程隊(duì)共同完成,若乙工程隊(duì)單獨(dú)完成需要60天;若兩個(gè)工程隊(duì)合作18天后,甲工程隊(duì)再單獨(dú)做10天也恰好完成.
(1)甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需要幾天?
(2)若甲工程隊(duì)每天施工費(fèi)用為0.6萬元,乙工程隊(duì)每天施工費(fèi)用為0.35萬元,要使該項(xiàng)目總施工費(fèi)用不超過22萬元,則乙工程隊(duì)至少施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是⊙O的直徑,CE是⊙O的弦,過點(diǎn)E作⊙O的切線,交CB的延長線于點(diǎn)G,過點(diǎn)B作BF⊥GE于點(diǎn)F,交CE的延長線于點(diǎn)A.
(1)求證:∠ABG=2∠C;
(2)若GF=3,GB=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,-3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線,與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求△PBC周長的最小值;
(3)如圖2,若E是線段AD上的一個(gè)動(dòng)點(diǎn)(E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①試求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
Ⅰ的面積等于______;
Ⅱ若四邊形DEFG是中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法不要求證明________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解某學(xué)校大班額現(xiàn)狀,某市決定通過新建學(xué)校來解決該問題.經(jīng)測(cè)算,建設(shè)6個(gè)小學(xué),5個(gè)中學(xué),需費(fèi)用13800萬元,建設(shè)10個(gè)小學(xué),7個(gè)中學(xué),需花費(fèi)20600萬元.
(1)求建設(shè)一個(gè)小學(xué),一個(gè)中學(xué)各需多少費(fèi)用.
(2)該市共計(jì)劃建設(shè)中小學(xué)80所,其中小學(xué)的建設(shè)數(shù)量不超過中學(xué)建設(shè)數(shù)量的1.5倍.設(shè)建設(shè)小學(xué)的數(shù)量為x個(gè),建設(shè)中小學(xué)校的總費(fèi)用為y萬元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②如何安排中小學(xué)的建設(shè)數(shù)量,才能使建設(shè)總費(fèi)用最低?
(3)受國家開放二胎政策及外來務(wù)工子女就讀的影響,預(yù)計(jì)在小學(xué)就讀人數(shù)會(huì)有明顯增加,現(xiàn)決定在(2)中所定的方案上增加投資以擴(kuò)大小學(xué)的就讀規(guī)模,若建設(shè)小學(xué)總費(fèi)用不超過建設(shè)中學(xué)的總費(fèi)用,則每所小學(xué)最多可增加多少費(fèi)用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中的三點(diǎn)A(1,0),B(-1,0),P(0,-1),將線段AB沿y軸向上平移m(m>0)個(gè)單位長度,得到線段CD,二次函數(shù)y=a(x-h)2+k的圖象經(jīng)過點(diǎn)P,C,D.
(1)當(dāng)m=1時(shí),a=______;當(dāng)m=2時(shí),a=______;
(2)猜想a與m的關(guān)系,并證明你的猜想;
(3)將線段AB沿y軸向上平移n(n>0)個(gè)單位長度,得到線段C1D1,點(diǎn)C1,D1分別與點(diǎn)A,B對(duì)應(yīng),二次函數(shù)y=2a(x-h)2+k的圖象經(jīng)過點(diǎn)P,C1,D1.
①求n與m之間的關(guān)系;
②當(dāng)△COD1是直角三角形時(shí),直接寫出a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com