江西省南昌市2008―2009學(xué)年度高三第二次模擬測(cè)試

數(shù)學(xué)試題(理科)

 

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分。

 

第Ⅰ卷

考生注意:

1.答題前,考生務(wù)必將自己的準(zhǔn)考證號(hào)、姓名填寫在答題卡上,考生要認(rèn)真核對(duì)答題卡上粘貼的條形碼的“準(zhǔn)考證號(hào)、姓名、考試科目”與考生本人準(zhǔn)考證號(hào)、姓名是否一致。

2.第Ⅰ卷每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào)。第Ⅱ卷用黑色墨水簽字筆在答題卡上書寫作答,若在試題卷上作答,答案無(wú)效。

3.考試結(jié)束,監(jiān)考員將試題卷、答題卡一并收回。

參考公式:

如果事件A、B互斥,那么                    球的表面積公式

P(A+B)=P(A)+P(B)                        

如果事件A、B相互獨(dú)立,那么                其中R表示球的半徑

P(A?B)=P(A)?P(B)                         球的體積公式

如果事件A在一次試驗(yàn)中發(fā)生的概率是P,     

那么n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率    其中R表示球的半徑

一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的).

1.已知集合P={}, Q={},則     (    )

試題詳情

       A.R                    B.(-2,+)     C.         D.

試題詳情

2.已知,則“”是“”的                                                     (    )

       A.充分不必要條件                              B.必要不充分條件

       C.充要條件                                          D.既不充分也不必要條件

 

試題詳情

3.若復(fù)數(shù)z滿足對(duì)應(yīng)關(guān)系f(1-z)=2z-i,則(1+i)?f(1-i)=                                           (    )

試題詳情

       A.2                        B.              C.                    D.0

試題詳情

4.函數(shù)在區(qū)間上是增函數(shù),且,則的值為

                                                                                                                              (    )

試題詳情

       A.0                   B.             C.1                     D.-1

試題詳情

5.?dāng)?shù)列{an}滿足a1+ 3?a2+ 32?a3+…+ 3n-1?an=,則an=                                    (    )

試題詳情

       A.                                     B.              C.              D.

試題詳情

6.已知是平面,、是直線,給出下列命題:①若,,則.    

試題詳情

②如果是異面直線,那么不與相交.③若,且,則.其中真命題的個(gè)數(shù)是                                             (    )

       A.3                   B.2                C.1                    D.0

試題詳情

7. 已知函數(shù)y =()+k的最大值是4,最小值是0,最小正周期是,直線 是其圖象的一條對(duì)稱軸,則下面各式中符合條件的解析式是                                              (    )

試題詳情

A.                          B.                               

試題詳情

       C.                     D.                          

試題詳情

8.已知是定義在上的偶函數(shù),且在上是增函數(shù),設(shè),,則的大小關(guān)系是                                                            (    )

試題詳情

A.          B.         C.            D.

試題詳情

9.點(diǎn)P(-3,1)在橢圓的左準(zhǔn)線上,過(guò)點(diǎn)P且方向向量為的光線,經(jīng)直線y=-2反射后通過(guò)橢圓的左焦點(diǎn),則這個(gè)橢圓的離心率為  (    )

試題詳情

       A.                  B.                C.                D.

試題詳情

10.已知是函數(shù)的反函數(shù),則的值是       (    )

試題詳情

       A .0                      B.                    C.                        D.1

試題詳情

11.已知點(diǎn)是雙曲線上的兩點(diǎn),O為坐標(biāo)原點(diǎn),且滿足,則點(diǎn)O到直線的距離等于                                                                (    )

試題詳情

       A.            B.             C.                  D.

試題詳情

12.若對(duì)任意,()有唯一確定的與之對(duì)應(yīng),則稱 為關(guān)于的二元函數(shù),F(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”: (1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào); (2)對(duì)稱性:;

試題詳情

 (3)三角形不等式:對(duì)任意的實(shí)數(shù)均成立.

試題詳情

今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于的廣義“距離”的序號(hào):

試題詳情

;②;③.能夠成為關(guān)于的的廣義“距離”的是                                                                           (    )

       A . ②③①         B . ①②           C. ①                    D. ① ③

 

第Ⅱ卷  (非選擇題   滿分90分)

 

試題詳情

二、填空題:本大題共4小題,每小題4分,共16分.把答案填寫在題中橫線上.

13.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果服從正態(tài)分布.若內(nèi)取值的概率為0.4,則上取值的概率為           

試題詳情

14.已知,則函數(shù)的單調(diào)遞減區(qū)間是              

試題詳情

15.某班一天上午有4節(jié)課,每節(jié)都需要安排一名教師去上課,現(xiàn)從A,B,C,D,E,F(xiàn)等6名教師中安排4人分別上一節(jié)課,第一節(jié)課只能從A、B兩人中安排一人,第四節(jié)課只能從A、C兩人中安排一人,則不同的安排方案共有_________。

      20090508

      試題詳情

      三、解答題:本大題共6小題,共76分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

      17.(本小題滿分12分)

      試題詳情

      如圖,圓內(nèi)接四邊形的邊長(zhǎng)分別為,

         (1)求弦BD的長(zhǎng);

      試題詳情

         (2)設(shè)點(diǎn)P是弧上的一動(dòng)點(diǎn)(不與B,D重合),分別以PB,PD為一邊作正三角形PBE、正三角形PDF,求這兩個(gè)正三角形面積和的取值范圍。

       

      試題詳情

       

       

       

       

       

       

       

       

       

      試題詳情

      18.(本小題滿分12分)

      為應(yīng)對(duì)金融危機(jī),刺激消費(fèi),某市給市民發(fā)放旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計(jì)老、中、青三類市民持有這種消費(fèi)卷到某旅游景點(diǎn)消費(fèi)額及其概率如下表:

      試題詳情

      200元

      300元

      400元

      500元

      老年

      試題詳情

      0.4

      試題詳情

      0.3

      試題詳情

      0.2

      試題詳情

      0.1

      中年

      試題詳情

      0.3

      試題詳情

      0.4

      試題詳情

      0.2

      試題詳情

      0.1

      青年

      試題詳情

      0.3

      試題詳情

      0.3

      試題詳情

      0.2

      試題詳情

      0.2

      某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點(diǎn),

         (1)求這三人恰有兩人消費(fèi)額大于300元的概率;

         (2)求這三人消費(fèi)總額大于或等于1300元的概率;

      試題詳情

         (3)設(shè)這三人中消費(fèi)額大于300元的人數(shù)為,求的分布列及的數(shù)學(xué)期望。

       

       

       

       

       

      試題詳情

      19.(本小題滿分12分)

      試題詳情

      如圖ABCD是一個(gè)直角梯形,其中,,過(guò)點(diǎn)A作CD的垂線AE,垂足為點(diǎn)E,現(xiàn)將△ADE折起,使二面角的大小是

      試題詳情

      (1)求證:平面平面;

      試題詳情

      (2)求點(diǎn)到平面的距離;

      試題詳情

      (3)求二面角的大小。

         

      試題詳情

       

       

       

       

       

       

       

       

       

       

       

      試題詳情

      20.(本小題滿分12分)

      試題詳情

      已知公差不為0的等差數(shù)列的前項(xiàng)和為,且滿足,又 依次成等比數(shù)列,數(shù)列滿足,其中為大于0的常數(shù)。

      試題詳情

         (1)求數(shù)列,的通項(xiàng)公式;

      試題詳情

         (2)記數(shù)列的前項(xiàng)和為,若當(dāng)且僅當(dāng)時(shí),取得最小值,求實(shí)數(shù) 的取值范圍。

       

       

       

       

       

       

       

      試題詳情

      21.(本小題滿分12分)

      試題詳情

      已知點(diǎn)的坐標(biāo)為,點(diǎn)軸負(fù)半軸上的動(dòng)點(diǎn),以線段為邊作菱形,使其兩對(duì)角線的交點(diǎn)恰好在軸上。

      試題詳情

         (1)求動(dòng)點(diǎn)的軌跡E的方程;

      試題詳情

         (2)若點(diǎn)是(1)中軌跡E上的動(dòng)點(diǎn),點(diǎn)是定點(diǎn),是否存在垂直軸的直線,使得直線被以線段為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,用表示直線的方程;若不存在,說(shuō)明理由。

       

       

       

       

       

       

       

       

      試題詳情

      22.(本小題滿分14分)

      試題詳情

      已知函數(shù)是自然對(duì)數(shù)的底),

      試題詳情

         (1)若函數(shù)上的增函數(shù),求的取值范圍;

      試題詳情

         (2)若對(duì)任意的,都有,求滿足條件的最大整數(shù)的值;

      試題詳情

         (3)證明:。

       

       

       

       

       

       

       

       

       

      試題詳情

       

      一、CABCB   BDADD   AC

      二、13.  0.1;14.;15. 36;16.存在,通項(xiàng)公式。

      三、

      17.解:(1)依題意得:

      得:,

      所以:,即,………………………………4分

        <center id="yffug"></center>

        20090508

        (2)設(shè),則,

            由正弦定理:,

               所以兩個(gè)正三角形的面積和,…………8分

                      ……………10分

               ,,

               所以:……………………………………12分

        18.解:(1);………………………4分

               (2)消費(fèi)總額為1500元的概率是:………………………5分

        消費(fèi)總額為1400元的概率是:………6分

        消費(fèi)總額為1300元的概率是:

        所以消費(fèi)總額大于或等于1300元的概率是;……………………8分

        (3),

        ,

        所以的分布列為:

        0

        1

        2

        3

         

        0.294

        0.448

        0.222

        0.036

        ………………………………………………11分

               數(shù)學(xué)期望是:!12分

        19.(1)證明:因?yàn)?sub>,所以平面,

        又因?yàn)?sub>,平面,

        平面平面;…………………4分

        (2)因?yàn)?sub>,所以平面

        所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

        過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,

        所以平面

        所以的長(zhǎng)為所求,………………………………………………………6分

        因?yàn)?sub>,所以為二面角的平面角,=1,

        點(diǎn)到平面的距離等于1;…………………………8分

               (3)連接,由平面,,得到,

               所以是二面角的平面角,

               ,…………………………………………………11分

               又因?yàn)槠矫?sub>平面,二面角的大小是!12分

        20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

               ,

               解得,所以,…………………3分

               所以,

               ,

               所以;…………………………………………………………………6分

               (2),因?yàn)?sub>,

               所以數(shù)列是遞增數(shù)列,…8分

               當(dāng)且僅當(dāng)時(shí),取得最小值,則:

               所以,即的取值范圍是!12分

        21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

        因?yàn)?sub>,所以,

        得到:,注意到不共線,

        所以軌跡方程為;……………5分

        (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

        假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

         

        ……………………………………………………7分

        弦長(zhǎng)為定值,則,即

        此時(shí)……………………………………………………9分

        所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為,

           當(dāng)時(shí),不存在滿足條件的直線!12分

        22.解:(1)設(shè),因?yàn)?sub> 上的增函數(shù),且,所以上的增函數(shù),

        所以,得到;所以的取值范圍為………4分

        (2)由條件得到,

        猜測(cè)最大整數(shù),……6分

        現(xiàn)在證明對(duì)任意恒成立,

        等價(jià)于,

        設(shè),

        當(dāng)時(shí),,當(dāng)時(shí),,

        所以對(duì)任意的都有,

        對(duì)任意恒成立,

        所以整數(shù)的最大值為2;……………………………………………………9分

        (3)由(2)得到不等式,

        所以,……………………11分

        所以原不等式成立!14分

         

         


        同步練習(xí)冊(cè)答案