7. 已知函數(shù)y =()+k的最大值是4.最小值是0.最小正周期是.直線 是其圖象的一條對稱軸.則下面各式中符合條件的解析式是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=-2sin(+)的最小正周期為2,則k=______________.

查看答案和解析>>

(09年萊陽一中學段檢測理)已知函數(shù)y =()+爪的最大值是4,最小值是0,最小正周期是,直線是其圖象的一條對稱軸,則下面各式中符合條件的解析式是

A.            B.

        C.        D.

查看答案和解析>>

已知函數(shù),則的極小值是          .

 

查看答案和解析>>

已知函數(shù),則的極小值是         .

查看答案和解析>>

定義區(qū)間[x1,x2]( x1<x2)的長度為|x1-x2|.已知函數(shù)y=|x2|的定義域為[a,b],值域為[0,8],則區(qū)間[a,b]長度的最大值等于
4
2
4
2

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

  • <video id="bkyhk"></video><kbd id="bkyhk"></kbd>

      20090508

      (2)設(shè),則,

          由正弦定理:,

             所以兩個正三角形的面積和,…………8分

                    ……………10分

             ,

             所以:……………………………………12分

      18.解:(1);………………………4分

             (2)消費總額為1500元的概率是:………………………5分

      消費總額為1400元的概率是:………6分

      消費總額為1300元的概率是:

      ,

      所以消費總額大于或等于1300元的概率是;……………………8分

      (3),

      ,

      所以的分布列為:

      0

      1

      2

      3

       

      0.294

      0.448

      0.222

      0.036

      ………………………………………………11分

             數(shù)學期望是:。…………12分

      19.(1)證明:因為,所以平面,

      又因為平面,

      平面平面;…………………4分

      (2)因為,所以平面,

      所以點到平面的距離等于點E到平面的距離,

      過點E作EF垂直CD且交于點F,因為平面平面,

      所以平面,

      所以的長為所求,………………………………………………………6分

      因為,所以為二面角的平面角,,=1,

      到平面的距離等于1;…………………………8分

             (3)連接,由平面,,得到,

             所以是二面角的平面角,

             ,…………………………………………………11分

             又因為平面平面,二面角的大小是!12分

      20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

             ,

             解得,所以,…………………3分

             所以,

             ,

             所以;…………………………………………………………………6分

             (2),因為,

             所以數(shù)列是遞增數(shù)列,…8分

             當且僅當時,取得最小值,則:

             所以,即的取值范圍是!12分

      21.解:(1)設(shè)點的坐標為,則點的坐標為,點的坐標為,

      因為,所以,

      得到:,注意到不共線,

      所以軌跡方程為;……………5分

      (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

      假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

       

      ……………………………………………………7分

      弦長為定值,則,即,

      此時……………………………………………………9分

      所以當時,存在直線,截得的弦長為,

         當時,不存在滿足條件的直線!12分

      22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

      所以,得到;所以的取值范圍為………4分

      (2)由條件得到,

      猜測最大整數(shù),……6分

      現(xiàn)在證明對任意恒成立,

      等價于,

      設(shè),

      時,,當時,,

      所以對任意的都有,

      對任意恒成立,

      所以整數(shù)的最大值為2;……………………………………………………9分

      (3)由(2)得到不等式,

      所以,……………………11分

      所以原不等式成立!14分

       

       


      同步練習冊答案