(1)求動點的軌跡E的方程, 查看更多

 

題目列表(包括答案和解析)

已知定點A(1,0),B(-1,0),C(0,1),D(0,2),動點P滿足:
AP
BP
=k|
PC
|
2

(1)求動點P軌跡M的方程,并說明方程表示的曲線類型;
(2)當(dāng)k=2時:
①E是x軸上的動點,EK,EQ分別切曲線M于K,Q兩點,如果|KQ|=
4
5
5
,求線段KQ的垂直平分線方程;
②若E點在△ABC邊上運動,EK,EQ分別切曲線M于K,Q兩點,求四邊形DKEQ的面積的取值范圍.

查看答案和解析>>

(2012•邯鄲一模)在平面直角坐標(biāo)系中,點P(x,y)為動點,已知點A(
2
,0)
,B(-
2
,0)
,直線PA與PB的斜率之積為-
1
2

(I)求動點P軌跡E的方程;
( II)過點F(1,0)的直線l交曲線E于M,N兩點,設(shè)點N關(guān)于x軸的對稱點為Q(M、Q不重合),求證:直線MQ過定點.

查看答案和解析>>

在平面直角坐標(biāo)系中,若,且

(1)求動點的軌跡的方程;

(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值。

查看答案和解析>>

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

已知分別是直線上的兩個動點,線段的長為,的中點.

(1)求動點的軌跡的方程;

(2)過點任意作直線(與軸不垂直),設(shè)與(1)中軌跡交于兩點,與軸交于點.若,證明:為定值.

 

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

      <table id="okysa"><abbr id="okysa"><noscript id="okysa"></noscript></abbr></table>

        20090508

        (2)設(shè),則,

            由正弦定理:,

               所以兩個正三角形的面積和,…………8分

                      ……………10分

               ,

               所以:……………………………………12分

        18.解:(1);………………………4分

               (2)消費總額為1500元的概率是:………………………5分

        消費總額為1400元的概率是:………6分

        消費總額為1300元的概率是:

        所以消費總額大于或等于1300元的概率是;……………………8分

        (3),

        所以的分布列為:

        0

        1

        2

        3

         

        0.294

        0.448

        0.222

        0.036

        ………………………………………………11分

               數(shù)學(xué)期望是:!12分

        19.(1)證明:因為,所以平面

        又因為,平面

        平面平面;…………………4分

        (2)因為,所以平面

        所以點到平面的距離等于點E到平面的距離,

        過點E作EF垂直CD且交于點F,因為平面平面

        所以平面,

        所以的長為所求,………………………………………………………6分

        因為,所以為二面角的平面角,,=1,

        到平面的距離等于1;…………………………8分

               (3)連接,由平面,,得到,

               所以是二面角的平面角,

               ,…………………………………………………11分

               又因為平面平面,二面角的大小是。……12分

        20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

               ,

               解得,所以,…………………3分

               所以,

               ,

               所以;…………………………………………………………………6分

               (2),因為

               所以數(shù)列是遞增數(shù)列,…8分

               當(dāng)且僅當(dāng)時,取得最小值,則:,

               所以,即的取值范圍是。………………12分

        21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為

        因為,所以,

        得到:,注意到不共線,

        所以軌跡方程為;……………5分

        (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

        假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為

         

        ……………………………………………………7分

        弦長為定值,則,即

        此時……………………………………………………9分

        所以當(dāng)時,存在直線,截得的弦長為,

           當(dāng)時,不存在滿足條件的直線!12分

        22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

        所以,得到;所以的取值范圍為………4分

        (2)由條件得到,

        猜測最大整數(shù),……6分

        現(xiàn)在證明對任意恒成立,

        等價于,

        設(shè),

        當(dāng)時,,當(dāng)時,,

        所以對任意的都有

        對任意恒成立,

        所以整數(shù)的最大值為2;……………………………………………………9分

        (3)由(2)得到不等式

        所以,……………………11分

        所以原不等式成立。…………………………………………………………………14分

         

         


        同步練習(xí)冊答案