9.點(diǎn)P在橢圓的左準(zhǔn)線上.過點(diǎn)P且方向向量為的光線.經(jīng)直線y=-2反射后通過橢圓的左焦點(diǎn).則這個橢圓的離心率為 查看更多

 

題目列表(包括答案和解析)

點(diǎn)P(-3,1)在橢圓的左準(zhǔn)線上,過點(diǎn)P斜率為的光線,

 

經(jīng)直線y=-2反射后通過橢圓的左焦點(diǎn),則這個橢圓的離心率為

A.                B.            C.           D.

 

 

查看答案和解析>>

點(diǎn)P(-3,1)在橢圓的左準(zhǔn)線上,過點(diǎn)P且方向?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052208005842185460/SYS201205220801375468447425_ST.files/image002.png">的光線,經(jīng)直線=-2反射后通過橢圓的左焦點(diǎn),則這個橢圓的離心率為(     )

   A .             B.             C.          D.

 

查看答案和解析>>

P(-3,-1)在橢圓的左準(zhǔn)線上,過點(diǎn)P且方向向量m = (2,5)的光線,經(jīng)過直線y = 2反射后,通過橢圓的左焦點(diǎn),則這個橢圓的離心率為 

    A.               B.              C.             D.

查看答案和解析>>

 點(diǎn)P(-3,1)在橢圓的左準(zhǔn)線上,過點(diǎn)P斜率為的光線,經(jīng)直線y=-2反射后通過橢圓的左焦點(diǎn),則這個橢圓的離心率為

A.                B.            C.           D.

 

查看答案和解析>>

點(diǎn)P(-3,1)在橢圓的左準(zhǔn)線上.過點(diǎn)P且方向向量為=(2,-5)的光線,經(jīng)直線=-2反射后通過橢圓的左焦點(diǎn),則這個橢圓的離心率為            ;

 

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

<tfoot id="66161"></tfoot>

20090508

(2)設(shè),則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費(fèi)總額為1500元的概率是:………………………5分

消費(fèi)總額為1400元的概率是:………6分

消費(fèi)總額為1300元的概率是:

所以消費(fèi)總額大于或等于1300元的概率是;……………………8分

(3)

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數(shù)學(xué)期望是:!12分

19.(1)證明:因?yàn)?sub>,所以平面,

又因?yàn)?sub>平面,

平面平面;…………………4分

(2)因?yàn)?sub>,所以平面

所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,

所以平面,

所以的長為所求,………………………………………………………6分

因?yàn)?sub>,所以為二面角的平面角,,=1,

點(diǎn)到平面的距離等于1;…………………………8分

       (3)連接,由平面,,得到,

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因?yàn)槠矫?sub>平面,二面角的大小是!12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

       ,

       解得,所以,…………………3分

       所以,

       ,

       所以;…………………………………………………………………6分

       (2),因?yàn)?sub>,

       所以數(shù)列是遞增數(shù)列,…8分

       當(dāng)且僅當(dāng)時,取得最小值,則:,

       所以,即的取值范圍是!12分

21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

因?yàn)?sub>,所以,

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

……………………………………………………7分

弦長為定值,則,即,

此時……………………………………………………9分

所以當(dāng)時,存在直線,截得的弦長為

   當(dāng)時,不存在滿足條件的直線!12分

22.解:(1)設(shè),因?yàn)?sub> 上的增函數(shù),且,所以上的增函數(shù),

所以,得到;所以的取值范圍為………4分

(2)由條件得到,

猜測最大整數(shù),……6分

現(xiàn)在證明對任意恒成立,

等價于

設(shè),

當(dāng)時,,當(dāng)時,

所以對任意的都有,

對任意恒成立,

所以整數(shù)的最大值為2;……………………………………………………9分

(3)由(2)得到不等式,

所以,……………………11分

所以原不等式成立!14分

 

 


同步練習(xí)冊答案