(1)求證:平面平面, 查看更多

 

題目列表(包括答案和解析)

如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,AC⊥CB,∠ABC=45°,側(cè)面A1ABB1是邊長為a的菱形,且垂直于底面ABC,∠A1AB=60°,E、F分別是AB1、BC的中點.
(1)求證EF∥平面A1ACC1;
(2)求EF與側(cè)面A1ABB1所成的角.

查看答案和解析>>

精英家教網(wǎng)把一副三角板如圖拼接,設(shè)BC=6,∠A=90°,AB=AC,∠BCD=90°,∠D=60°,使兩塊三角板所在的平面互相垂直.
(1)求證:平面ABD⊥平面ACD.
(2)求三棱錐C-ABD的高.

查看答案和解析>>

(2013•德州一模)已知四棱錐P-ABCD的底面是菱形∠BCD=60°,AB=PB=PD=2,PC=
3
,AC與BD交于O點,H為OC的中點.
(1)求證PH⊥平面ABCD;
(2)求側(cè)面PAB與底面ABCD所成二面角的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖所示,直三棱柱ABC-A1B1C1的各條棱長均為a,D是側(cè)棱CC1的中點.
(1)求證:平面AB1D⊥平面ABB1A1;
(2)求異面直線AB1與BC所成角的余弦值;
(3)求平面AB1D與平面ABC所成二面角(銳角)的大。

查看答案和解析>>

精英家教網(wǎng)如圖,在四面體A-BCD中,有CB=CD,平面ABD⊥平面BCD,點E、F分別為BD,AB的中點,MN∥平面ABD.
(1)求證:平面ABD⊥平面EFC;
(2)如圖,求證:直線MN∥直線GH.

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

20090508

(2)設(shè),則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費總額為1500元的概率是:………………………5分

消費總額為1400元的概率是:………6分

消費總額為1300元的概率是:

,

所以消費總額大于或等于1300元的概率是;……………………8分

(3),

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數(shù)學(xué)期望是:!12分

19.(1)證明:因為,所以平面,

又因為,平面,

平面平面;…………………4分

(2)因為,所以平面

所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,

所以平面,

所以的長為所求,………………………………………………………6分

因為,所以為二面角的平面角,,=1,

到平面的距離等于1;…………………………8分

       (3)連接,由平面,,得到,

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因為平面平面,二面角的大小是!12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

       ,

       解得,所以,…………………3分

       所以,

      

       所以;…………………………………………………………………6分

       (2),因為

       所以數(shù)列是遞增數(shù)列,…8分

       當(dāng)且僅當(dāng)時,取得最小值,則:,

       所以,即的取值范圍是。………………12分

21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為,

因為,所以,

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為

 

……………………………………………………7分

弦長為定值,則,即,

此時……………………………………………………9分

所以當(dāng)時,存在直線,截得的弦長為,

   當(dāng)時,不存在滿足條件的直線。……………………………………………12分

22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

所以,得到;所以的取值范圍為………4分

(2)由條件得到

猜測最大整數(shù),……6分

現(xiàn)在證明對任意恒成立,

等價于,

設(shè),

當(dāng)時,,當(dāng)時,,

所以對任意的都有

對任意恒成立,

所以整數(shù)的最大值為2;……………………………………………………9分

(3)由(2)得到不等式,

所以,……………………11分

所以原不等式成立!14分

 

 


同步練習(xí)冊答案