C. D. 查看更多

 

題目列表(包括答案和解析)

10、在集合{a,b,c,d}上定義兩種運(yùn)算⊕和?如圖那么d?(a⊕c)=( 。

查看答案和解析>>

函數(shù)y=
ex+e-x
ex-e-x
的圖象大致為( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量
OA
=
a
OB
=
b
,其中
a
=(3,1),
b
=(1,3)
,若
OC
a
b
,且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

12、今年“3•15”,某報社做了一次關(guān)于“什么是新時代的雷鋒精神?”的調(diào)查,在A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,共回收1000份,因報道需要,再從回收的問卷中按單位分層抽取容量為150的樣本,若在B單位抽30份,則在D單位抽取的問卷是
60
份.

查看答案和解析>>

4、集合M={x|-2≤x≤2},N={y|0≤y≤2},給出下列四個圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是( 。

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

<tbody id="dz3ih"><strong id="dz3ih"></strong></tbody>

20090508

(2)設(shè),則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費(fèi)總額為1500元的概率是:………………………5分

消費(fèi)總額為1400元的概率是:………6分

消費(fèi)總額為1300元的概率是:

,

所以消費(fèi)總額大于或等于1300元的概率是;……………………8分

(3)

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數(shù)學(xué)期望是:。…………12分

19.(1)證明:因為,所以平面

又因為,平面,

平面平面;…………………4分

(2)因為,所以平面,

所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因為平面平面,

所以平面

所以的長為所求,………………………………………………………6分

因為,所以為二面角的平面角,,=1,

點(diǎn)到平面的距離等于1;…………………………8分

       (3)連接,由平面,得到,

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因為平面平面,二面角的大小是!12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

       ,

       解得,所以,…………………3分

       所以

       ,

       所以;…………………………………………………………………6分

       (2),因為,

       所以數(shù)列是遞增數(shù)列,…8分

       當(dāng)且僅當(dāng)時,取得最小值,則:,

       所以,即的取值范圍是!12分

21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

因為,所以,

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

……………………………………………………7分

弦長為定值,則,即

此時……………………………………………………9分

所以當(dāng)時,存在直線,截得的弦長為,

   當(dāng)時,不存在滿足條件的直線!12分

22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

所以,得到;所以的取值范圍為………4分

(2)由條件得到,

猜測最大整數(shù),……6分

現(xiàn)在證明對任意恒成立,

等價于,

設(shè),

當(dāng)時,,當(dāng)時,,

所以對任意的都有,

對任意恒成立,

所以整數(shù)的最大值為2;……………………………………………………9分

(3)由(2)得到不等式

所以,……………………11分

所以原不等式成立!14分

 

 


同步練習(xí)冊答案