2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(湖北卷)
數(shù)學(xué)(理工農(nóng)醫(yī)類(lèi))
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁(yè),第Ⅱ卷3至4頁(yè),共4頁(yè)。全卷共150分?荚囉脮r(shí)120分鐘。
第Ⅰ卷(選擇題 共50分)
注意事項(xiàng):
1. 答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在試題卷和答題紙上,并將準(zhǔn)考證號(hào)條形碼粘貼在答題卡上的指定位置。
2. 每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào),答在試題卷上無(wú)效。
3. 考試結(jié)束后,監(jiān)考人員將本試題卷和答題卡一并收回。
一、選擇題:本大題共10小題,每小題5分,共50分散。在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.已知向量,是不平行于軸的單位向量,且,則 ( B )
A.() B.() C.() D.()
2.若互不相等的實(shí)數(shù)成等差數(shù)列,成等比數(shù)列,且,則 ( D )
A.4 B.2 C.-2 D.-4
3.若的內(nèi)角滿足,則 ( A )
A. B. C. D.
4.設(shè),則的定義域?yàn)?nbsp; ( B )
A. B.
C. D.
5.在的展開(kāi)式中,的冪的指數(shù)是整數(shù)的項(xiàng)共有 ( C )
A.3項(xiàng) B.4項(xiàng) C.5項(xiàng) D.6項(xiàng)
6.關(guān)于直線與平面,有以下四個(gè)命題:
①若且,則;
②若且,則;
③若且,則;
④若且,則;
其中真命題的序號(hào)是 ( D )
A.①② B.③④ C.①④ D.②③
7.設(shè)過(guò)點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),為坐標(biāo)原點(diǎn),若且,則點(diǎn)的軌跡方程是 ( D )
A. B.
C. D.
8.有限集合中元素的個(gè)數(shù)記做,設(shè)都為有限集合,給出下列命題:
①的充要條件是;
②的充要條件是;
③的充要條件是;
④的充要條件是;
其中真命題的序號(hào)是 ( B )
A.③④ B.①② C.①④ D.②③
9.已知平面區(qū)域D由以為頂點(diǎn)的三角形內(nèi)部&邊界組成。若在區(qū)域D上有無(wú)窮多個(gè)點(diǎn)可使目標(biāo)函數(shù)取得最小值,則 (C )
A.-2 B.-1 C.1 D.4
10.關(guān)于的方程,給出下列四個(gè)命題: ( A )
①存在實(shí)數(shù),使得方程恰有2個(gè)不同的實(shí)根;
②存在實(shí)數(shù),使得方程恰有4個(gè)不同的實(shí)根;
③存在實(shí)數(shù),使得方程恰有5個(gè)不同的實(shí)根;
④存在實(shí)數(shù),使得方程恰有8個(gè)不同的實(shí)根;
其中假命題的個(gè)數(shù)是
A.0 B.1 C.2 D.3
第Ⅱ卷(非選擇題 共100分)
注意事項(xiàng):
第Ⅱ卷用0.5毫米黑色的簽字筆或黑色墨水鋼筆直接答在答題卡上。答在試題卷上無(wú)效。
二、填空題:本大題共5小題,每小題5分,共25分,把答案填在答題卡相應(yīng)位置上。
11.設(shè)為實(shí)數(shù),且,則 4 。
12.接種某疫苗后,出現(xiàn)發(fā)熱反應(yīng)的概率為0.80,現(xiàn)有5人接種了該疫苗,至少有3人出現(xiàn)發(fā)熱反應(yīng)的概率為 0.94 。(精確到0.01)
13.已知直線與圓相切,則的值為 -18或8 。
14.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行。那么安排這6項(xiàng)工程的不同排法種數(shù)是 20 。(用數(shù)字作答)
15.將楊輝三角中的每一個(gè)數(shù)都換成,就得到一個(gè)如右圖所示的分?jǐn)?shù)三角形,成為萊布尼茨三角形,從萊布尼茨三角形可看出,其中 r+1 。令,則 。
三、解答題:本大題共6小題,共75分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。
16.(本小題滿分12分)
設(shè)函數(shù),其中向量,,,。
(Ⅰ)、求函數(shù)的最大值和最小正周期;
(Ⅱ)、將函數(shù)的圖像按向量平移,使平移后得到的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng),求長(zhǎng)度最小的。
點(diǎn)評(píng):本小題主要考查平面向量數(shù)量積的計(jì)算方法、三角公式、三角函數(shù)的性質(zhì)及圖像的基本知識(shí),考查推理和運(yùn)算能力。
解:(Ⅰ)由題意得,f(x)=a?(b+c)=(sinx,-cosx)?(sinx-cosx,sinx-3cosx)
=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+).
所以,f(x)的最大值為2+,最小正周期是=.
(Ⅱ)由sin(2x+)=0得2x+=k.,即x=,k∈Z,
于是d=(,-2),k∈Z.
因?yàn)閗為整數(shù),要使最小,則只有k=1,此時(shí)d=(?,?2)即為所求.
17.(本小題滿分13分)
已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。
(Ⅰ)、求數(shù)列的通項(xiàng)公式;
(Ⅱ)、設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m;
點(diǎn)評(píng):本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎(chǔ)知識(shí)和基本的運(yùn)算技能,考查分析問(wèn)題的能力和推理能力。
解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.
當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)得知==,
故Tn===(1-).
因此,要使(1-)<()成立的m,必須且僅須滿足≤,即m≥10,所以滿足要求的最小正整數(shù)m為10.
如圖,在棱長(zhǎng)為1的正方體中,是側(cè)棱上的一點(diǎn),。
(Ⅰ)、試確定,使直線與平面所成角的正切值為;
(Ⅱ)、在線段上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的,D1Q在平面上的射影垂直于,并證明你的結(jié)論。
點(diǎn)評(píng):本小題主要考查線面關(guān)系、直線于平面所成的角的有關(guān)知識(shí)及空間想象能力和推理運(yùn)算能力,考查運(yùn)用向量知識(shí)解決數(shù)學(xué)問(wèn)題的能力。
解法1:(Ⅰ)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面相交于點(diǎn),,連結(jié)OG,因?yàn)?/p>
PC∥平面,平面∩平面APC=OG,
故OG∥PC,所以,OG=PC=.
又AO⊥BD,AO⊥BB1,所以AO⊥平面,
故∠AGO是AP與平面所成的角.
在Rt△AOG中,tanAGO=,即m=.
所以,當(dāng)m=時(shí),直線AP與平面所成的角的正切值為.
(Ⅱ)可以推測(cè),點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn)O1,因?yàn)?/p>
D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,
又AP平面ACC1A1,故 D1O1⊥AP.
那么根據(jù)三垂線定理知,D1O1在平面APD1的射影與AP垂直。
19.(本小題滿分10分)
在某校舉行的數(shù)學(xué)競(jìng)賽中,全體參賽學(xué)生的競(jìng)賽成績(jī)近似服從正態(tài)分布。已知成績(jī)?cè)?0分以上(含90分)的學(xué)生有12名。
(Ⅰ)、試問(wèn)此次參賽學(xué)生總數(shù)約為多少人?
(Ⅱ)、若該校計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)排在前50名的學(xué)生,試問(wèn)設(shè)獎(jiǎng)的分?jǐn)?shù)線約為多少分?
可共查閱的(部分)標(biāo)準(zhǔn)正態(tài)分布表
0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857
點(diǎn)評(píng):本小題主要考查正態(tài)分布,對(duì)獨(dú)立事件的概念和標(biāo)準(zhǔn)正態(tài)分布的查閱,考查運(yùn)用概率統(tǒng)計(jì)知識(shí)解決實(shí)際問(wèn)題的能力。
解:(Ⅰ)設(shè)參賽學(xué)生的分?jǐn)?shù)為,因?yàn)椤玁(70,100),由條件知,
P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.228.
這說(shuō)明成績(jī)?cè)?0分以上(含90分)的學(xué)生人數(shù)約占全體參賽人數(shù)的2.28%,因此,
參賽總?cè)藬?shù)約為≈526(人)。
(Ⅱ)假定設(shè)獎(jiǎng)的分?jǐn)?shù)線為x分,則
P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,
即=0.9049,查表得≈1.31,解得x=83.1.
故設(shè)獎(jiǎng)得分?jǐn)?shù)線約為83.1分。
20.(本小題滿分14分)
設(shè)分別為橢圓的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且為它的右準(zhǔn)線。
(Ⅰ)、求橢圓的方程;
(Ⅱ)、設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線分別與橢圓相交于異于的點(diǎn),證明點(diǎn)在以為直徑的圓內(nèi)。
(此題不要求在答題卡上畫(huà)圖)
點(diǎn)評(píng):本小題主要考查直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行推理運(yùn)算的能力和解決問(wèn)題的能力。
解:(Ⅰ)依題意得 a=2c,=4,解得a=2,c=1,從而b=.
故橢圓的方程為 .
(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).設(shè)M(x0,y0).
∵M(jìn)點(diǎn)在橢圓上,∴y0=(4-x02). 1
又點(diǎn)M異于頂點(diǎn)A、B,∴-2<x0<2,由P、A、M三點(diǎn)共線可以得
P(4,).
從而=(x0-2,y0),
=(2,).
∴?=2x0-4+=(x02-4+3y02). 2
將1代入2,化簡(jiǎn)得?=(2-x0).
∵2-x0>0,∴?>0,則∠MBP為銳角,從而∠MBN為鈍角,
故點(diǎn)B在以MN為直徑的圓內(nèi)。
解法2:由(Ⅰ)得A(-2,0),B(2,0).設(shè)M(x1,y1),N(x2,y2),
則-2<x1<2,-2<x2<2,又MN的中點(diǎn)Q的坐標(biāo)為(,),
依題意,計(jì)算點(diǎn)B到圓心Q的距離與半徑的差
-=(-2)2+()2-[(x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y1 3
又直線AP的方程為y=,直線BP的方程為y=,
而點(diǎn)兩直線AP與BP的交點(diǎn)P在準(zhǔn)線x=4上,
∴,即y2= 4
又點(diǎn)M在橢圓上,則,即 5
于是將4、5代入3,化簡(jiǎn)后可得-=.
從而,點(diǎn)B在以MN為直徑的圓內(nèi)。
21.(本小題滿分14分)
設(shè)是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)、求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(Ⅱ)、設(shè),。若存在使得成立,求的取值范圍。
點(diǎn)評(píng):本小題主要考查函數(shù)、不等式和導(dǎo)數(shù)的應(yīng)用等知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,
由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,
則 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x
=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.
令f `(x)=0,得x1=3或x2=-a-1,由于x=3是極值點(diǎn),
所以x+a+1≠0,那么a≠-4.
當(dāng)a<-4時(shí),x2>3=x1,則
在區(qū)間(-∞,3)上,f `(x)<0, f (x)為減函數(shù);
在區(qū)間(3,?a?1)上,f `(x)>0,f (x)為增函數(shù);
在區(qū)間(?a?1,+∞)上,f `(x)<0,f (x)為減函數(shù)。
當(dāng)a>-4時(shí),x2<3=x1,則
在區(qū)間(-∞,?a?1)上,f `(x)<0, f (x)為減函數(shù);
在區(qū)間(?a?1,3)上,f `(x)>0,f (x)為增函數(shù);
在區(qū)間(3,+∞)上,f `(x)<0,f (x)為減函數(shù)。
(Ⅱ)由(Ⅰ)知,當(dāng)a>0時(shí),f (x)在區(qū)間(0,3)上的單調(diào)遞增,在區(qū)間(3,4)上單調(diào)遞減,那么f (x)在區(qū)間[0,4]上的值域是[min(f (0),f (4) ),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,
那么f (x)在區(qū)間[0,4]上的值域是[-(2a+3)e3,a+6].
又在區(qū)間[0,4]上是增函數(shù),
且它在區(qū)間[0,4]上的值域是[a2+,(a2+)e4],
由于(a2+)-(a+6)=a2-a+=()2≥0,所以只須僅須
(a2+)-(a+6)<1且a>0,解得0<a<.
故a的取值范圍是(0,)。
2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(湖北卷)
數(shù)學(xué)(理工農(nóng)醫(yī)類(lèi))(編輯:寧岡中學(xué)張建華)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁(yè),第Ⅱ卷3至4頁(yè),共4頁(yè)。全卷共150分?荚囉脮r(shí)120分鐘。
第Ⅰ卷(選擇題 共50分)
注意事項(xiàng):
4. 答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在試題卷和答題紙上,并將準(zhǔn)考證號(hào)條形碼粘貼在答題卡上的指定位置。
5. 每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào),答在試題卷上無(wú)效。
6. 考試結(jié)束后,監(jiān)考人員將本試題卷和答題卡一并收回。
一、選擇題:本大題共10小題,每小題5分,共50分散。在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.已知向量,是不平行于軸的單位向量,且,則 ( B )
A.() B.() C.() D.()
解:設(shè)=(x,y),則有解得x=,y=,選B
2.若互不相等的實(shí)數(shù)成等差數(shù)列,成等比數(shù)列,且,則 ( D )
A.4 B.2 C.-2 D.-4
解:由互不相等的實(shí)數(shù)成等差數(shù)列可設(shè)a=b-d,c=b+d,由可得b=2,所以a=2-d,c=2+d,又成等比數(shù)列可得d=6,所以a=-4,選D
3.若的內(nèi)角滿足,則 ( A )
A. B. C. D.
解:由sin2A=2sinAcosA>0,可知A這銳角,所以sinA+cosA>0,又,故選A
4.設(shè),則的定義域?yàn)?nbsp; ( B )
A. B.
C. D.
解:f(x)的定義域是(-2,2),故應(yīng)有-2<<2且-2<<2解得-4<x<-1或1<x<4
故選B
5.在的展開(kāi)式中,的冪的指數(shù)是整數(shù)的項(xiàng)共有 ( C )
A.3項(xiàng) B.4項(xiàng) C.5項(xiàng) D.6項(xiàng)
解:,當(dāng)r=0,3,6,9,12,15,18,21,24時(shí),x的指數(shù)分別是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均為2的整數(shù)次冪,故選C
6.關(guān)于直線與平面,有以下四個(gè)命題:
①若且,則;
②若且,則;
③若且,則;
④若且,則;
其中真命題的序號(hào)是 ( D )
A.①② B.③④ C.①④ D.②③
解:用排除法可得選D
7.設(shè)過(guò)點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),為坐標(biāo)原點(diǎn),若且,則點(diǎn)的軌跡方程是 ( D )
A. B.
C. D.
解:設(shè)P(x,y),則Q(-x,y),又設(shè)A(a,0),B(0,b),則a>0,b>0,于是,由可得a=x,b=3y,所以x>0,y>0又=(-a,b)=(-x,3y),由=1可得
故選D
8.有限集合中元素的個(gè)數(shù)記做,設(shè)都為有限集合,給出下列命題:
①的充要條件是;
②的充要條件是;
③的充要條件是;
④的充要條件是;
其中真命題的序號(hào)是 ( B )
A.③④ B.①② C.①④ D.②③
解:①Û集合A與集合B沒(méi)有公共元素,正確
②Û集合A中的元素都是集合B中的元素,正確
③Û集合A中至少有一個(gè)元素不是集合B中的元素,因此A中元素的個(gè)數(shù)有可能多于B中元素的個(gè)數(shù),錯(cuò)誤
④Û集合A中的元素與集合B中的元素完全相同,兩個(gè)集合的元素個(gè)數(shù)相同,并不意味著它們的元素相同,錯(cuò)誤
選B
9.已知平面區(qū)域D由以為頂點(diǎn)的三角形內(nèi)部以及邊界組成。若在區(qū)域D上有無(wú)窮多個(gè)點(diǎn)可使目標(biāo)函數(shù)z=x+my取得最小值,則 (C )
A.-2 B.-1 C.1 D.4
解:依題意,令z=0,可得直線x+my=0的斜率為-,結(jié)合可行域可知當(dāng)直線x+my=0與直線AC平行時(shí),線段AC上的任意一點(diǎn)都可使目標(biāo)函數(shù)z=x+my取得最小值,而直線AC的斜率為-1,所以m=1,選C
10.關(guān)于的方程,給出下列四個(gè)命題: ( A )
①存在實(shí)數(shù),使得方程恰有2個(gè)不同的實(shí)根;
②存在實(shí)數(shù),使得方程恰有4個(gè)不同的實(shí)根;
③存在實(shí)數(shù),使得方程恰有5個(gè)不同的實(shí)根;
④存在實(shí)數(shù),使得方程恰有8個(gè)不同的實(shí)根;
其中假命題的個(gè)數(shù)是
A.0 B.1 C.2 D.3
解:關(guān)于x的方程可化為…………(1)
或(-1<x<1)…………(2)
① 當(dāng)k=-2時(shí),方程(1)的解為±,方程(2)無(wú)解,原方程恰有2個(gè)不同的實(shí)根
② 當(dāng)k=時(shí),方程(1)有兩個(gè)不同的實(shí)根±,方程(2)有兩個(gè)不同的實(shí)根±,即原方程恰有4個(gè)不同的實(shí)根
③ 當(dāng)k=0時(shí),方程(1)的解為-1,+1,±,方程(2)的解為x=0,原方程恰有5個(gè)不同的實(shí)根
④ 當(dāng)k=時(shí),方程(1)的解為±,±,方程(2)的解為±,±,即原方程恰有8個(gè)不同的實(shí)根
選A
第Ⅱ卷(非選擇題 共100分)
注意事項(xiàng):
第Ⅱ卷用0.5毫米黑色的簽字筆或黑色墨水鋼筆直接答在答題卡上。答在試題卷上無(wú)效。
二、填空題:本大題共5小題,每小題5分,共25分,把答案填在答題卡相應(yīng)位置上。
11.設(shè)為實(shí)數(shù),且,則 4 。
解:,
而 所以,解得x=-1,y=5,
所以x+y=4。
12.接種某疫苗后,出現(xiàn)發(fā)熱反應(yīng)的概率為0.80,現(xiàn)有5人接種了該疫苗,至少有3人出現(xiàn)發(fā)熱反應(yīng)的概率為 0.94 。(精確到0.01)
解:P==0.94
13.已知直線與圓相切,則的值為 -18或8 。
解:圓的方程可化為,所以圓心坐標(biāo)為(1,0),半徑為1,由已知可得
,所以的值為-18或8。
14.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行。那么安排這6項(xiàng)工程的不同排法種數(shù)是 20 。(用數(shù)字作答)
解:依題意,只需將剩余兩個(gè)工程插在由甲、乙、丙、丁四個(gè)工程形成的5個(gè)空中,可得有=20種不同排法。
15.將楊輝三角中的每一個(gè)數(shù)都換成,就得到一個(gè)如下圖所示的分?jǐn)?shù)三角形,成為萊布尼茨三角形,從萊布尼茨三角形可看出,其中 r+1 。令,則
…
解:第一個(gè)空通過(guò)觀察可得。
=(1+-1)+()+(+-)+(+-)+…+(+-)+(+-)
=(1+++…+)+(++++…+)-2(++…+)
=〔(1+++…+)-(++…+)〕+〔(++++…+)
-(++…+)〕=1-+-=+-
所以
三、解答題:本大題共6小題,共75分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。
16.(本小題滿分12分)
設(shè)函數(shù),其中向量,,,。
(Ⅰ)、求函數(shù)的最大值和最小正周期;
(Ⅱ)、將函數(shù)的圖像按向量平移,使平移后得到的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng),求長(zhǎng)度最小的。
點(diǎn)評(píng):本小題主要考查平面向量數(shù)量積的計(jì)算方法、三角公式、三角函數(shù)的性質(zhì)及圖像的基本知識(shí),考查推理和運(yùn)算能力。
解:(Ⅰ)由題意得,f(x)=a?(b+c)=(sinx,-cosx)?(sinx-cosx,sinx-3cosx)
=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+).
所以,f(x)的最大值為2+,最小正周期是=.
(Ⅱ)由sin(2x+)=0得2x+=k.,即x=,k∈Z,
于是d=(,-2),k∈Z.
因?yàn)閗為整數(shù),要使最小,則只有k=1,此時(shí)d=(?,?2)即為所求.
17.(本小題滿分13分)
已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。
(Ⅰ)、求數(shù)列的通項(xiàng)公式;
(Ⅱ)、設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m;
點(diǎn)評(píng):本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎(chǔ)知識(shí)和基本的運(yùn)算技能,考查分析問(wèn)題的能力和推理能力。
解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.
當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)得知==,
故Tn===(1-).
因此,要使(1-)<()成立的m,必須且僅須滿足≤,即m≥10,所以滿足要求的最小正整數(shù)m為10.
如圖,在棱長(zhǎng)為1的正方體中,是側(cè)棱上的一點(diǎn),。
(Ⅰ)、試確定,使直線與平面所成角的正切值為;
(Ⅱ)、在線段上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的,D1Q在平面上的射影垂直于,并證明你的結(jié)論。
點(diǎn)評(píng):本小題主要考查線面關(guān)系、直線于平面所成的角的有關(guān)知識(shí)及空間想象能力和推理運(yùn)算能力,考查運(yùn)用向量知識(shí)解決數(shù)學(xué)問(wèn)題的能力。
解法1:(Ⅰ)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面相交于點(diǎn),,連結(jié)OG,因?yàn)?/p>
PC∥平面,平面∩平面APC=OG,
故OG∥PC,所以,OG=PC=.
又AO⊥BD,AO⊥BB1,所以AO⊥平面,
故∠AGO是AP與平面所成的角.
在Rt△AOG中,tanAGO=,即m=.
所以,當(dāng)m=時(shí),直線AP與平面所成的角的正切值為.
(Ⅱ)可以推測(cè),點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn)O1,因?yàn)?/p>
D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,
又AP平面ACC1A1,故 D1O1⊥AP.
那么根據(jù)三垂線定理知,D1O1在平面APD1的射影與AP垂直。
19.(本小題滿分10分)
在某校舉行的數(shù)學(xué)競(jìng)賽中,全體參賽學(xué)生的競(jìng)賽成績(jī)近似服從正態(tài)分布。已知成績(jī)?cè)?0分以上(含90分)的學(xué)生有12名。
(Ⅰ)、試問(wèn)此次參賽學(xué)生總數(shù)約為多少人?
(Ⅱ)、若該校計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)排在前50名的學(xué)生,試問(wèn)設(shè)獎(jiǎng)的分?jǐn)?shù)線約為多少分?
可共查閱的(部分)標(biāo)準(zhǔn)正態(tài)分布表
0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857
點(diǎn)評(píng):本小題主要考查正態(tài)分布,對(duì)獨(dú)立事件的概念和標(biāo)準(zhǔn)正態(tài)分布的查閱,考查運(yùn)用概率統(tǒng)計(jì)知識(shí)解決實(shí)際問(wèn)題的能力。
解:(Ⅰ)設(shè)參賽學(xué)生的分?jǐn)?shù)為,因?yàn)椤玁(70,100),由條件知,
P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.228.
這說(shuō)明成績(jī)?cè)?0分以上(含90分)的學(xué)生人數(shù)約占全體參賽人數(shù)的2.28%,因此,
參賽總?cè)藬?shù)約為≈526(人)。
(Ⅱ)假定設(shè)獎(jiǎng)的分?jǐn)?shù)線為x分,則
P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,
即=0.9049,查表得≈1.31,解得x=83.1.
故設(shè)獎(jiǎng)得分?jǐn)?shù)線約為83.1分。
20.(本小題滿分14分)
設(shè)分別為橢圓的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且為它的右準(zhǔn)線。
(Ⅰ)、求橢圓的方程;
(Ⅱ)、設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線分別與橢圓相交于異于的點(diǎn),證明點(diǎn)在以為直徑的圓內(nèi)。
(此題不要求在答題卡上畫(huà)圖)
點(diǎn)評(píng):本小題主要考查直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行推理運(yùn)算的能力和解決問(wèn)題的能力。
解:(Ⅰ)依題意得 a=2c,=4,解得a=2,c=1,從而b=.
故橢圓的方程為 .
(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).設(shè)M(x0,y0).
∵M(jìn)點(diǎn)在橢圓上,∴y0=(4-x02). 1
又點(diǎn)M異于頂點(diǎn)A、B,∴-2<x0<2,由P、A、M三點(diǎn)共線可以得
P(4,).
從而=(x0-2,y0),
=(2,).
∴?=2x0-4+=(x02-4+3y02). 2
將1代入2,化簡(jiǎn)得?=(2-x0).
∵2-x0>0,∴?>0,則∠MBP為銳角,從而∠MBN為鈍角,
故點(diǎn)B在以MN為直徑的圓內(nèi)。
解法2:由(Ⅰ)得A(-2,0),B(2,0).設(shè)M(x1,y1),N(x2,y2),
則-2<x1<2,-2<x2<2,又MN的中點(diǎn)Q的坐標(biāo)為(,),
依題意,計(jì)算點(diǎn)B到圓心Q的距離與半徑的差
-=(-2)2+()2-[(x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y1 3
又直線AP的方程為y=,直線BP的方程為y=,
而點(diǎn)兩直線AP與BP的交點(diǎn)P在準(zhǔn)線x=4上,
∴,即y2= 4
又點(diǎn)M在橢圓上,則,即 5
于是將4、5代入3,化簡(jiǎn)后可得-=.
從而,點(diǎn)B在以MN為直徑的圓內(nèi)。
21.(本小題滿分14分)
設(shè)是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)、求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(Ⅱ)、設(shè),。若存在使得成立,求的取值范圍。
點(diǎn)評(píng):本小題主要考查函數(shù)、不等式和導(dǎo)數(shù)的應(yīng)用等知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,
由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,
則 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x
=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.
令f `(x)=0,得x1=3或x2=-a-1,由于x=3是極值點(diǎn),
所以x+a+1≠0,那么a≠-4.
當(dāng)a<-4時(shí),x2>3=x1,則
在區(qū)間(-∞,3)上,f `(x)<0, f (x)為減函數(shù);
在區(qū)間(3,?a?1)上,f `(x)>0,f (x)為增函數(shù);
在區(qū)間(?a?1,+∞)上,f `(x)<0,f (x)為減函數(shù)。
當(dāng)a>-4時(shí),x2<3=x1,則
在區(qū)間(-∞,?a?1)上,f `(x)<0, f (x)為減函數(shù);
在區(qū)間(?a?1,3)上,f `(x)>0,f (x)為增函數(shù);
在區(qū)間(3,+∞)上,f `(x)<0,f (x)為減函數(shù)。
(Ⅱ)由(Ⅰ)知,當(dāng)a>0時(shí),f (x)在區(qū)間(0,3)上的單調(diào)遞增,在區(qū)間(3,4)上單調(diào)遞減,那么f (x)在區(qū)間[0,4]上的值域是[min(f (0),f (4) ),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,
那么f (x)在區(qū)間[0,4]上的值域是[-(2a+3)e3,a+6].
又在區(qū)間[0,4]上是增函數(shù),
且它在區(qū)間[0,4]上的值域是[a2+,(a2+)e4],
由于(a2+)-(a+6)=a2-a+=()2≥0,所以只須僅須
(a2+)-(a+6)<1且a>0,解得0<a<.
故a的取值范圍是(0,)。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com