相關習題
 0  169391  169399  169405  169409  169415  169417  169421  169427  169429  169435  169441  169445  169447  169451  169457  169459  169465  169469  169471  169475  169477  169481  169483  169485  169486  169487  169489  169490  169491  169493  169495  169499  169501  169505  169507  169511  169517  169519  169525  169529  169531  169535  169541  169547  169549  169555  169559  169561  169567  169571  169577  169585  266669 

科目: 來源:不詳 題型:解答題

已知中心在原點,頂點A1、A2在x軸上,離心率e=
21
3
的雙曲線過點P(6,6).
(1)求雙曲線方程.
(2)動直線l經(jīng)過△A1PA2的重心G,與雙曲線交于不同的兩點M、N,問:是否存在直線l,使G平分線段MN,證明你的結論.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
3
=1
(a
3
)的離心率e=
1
2
.直線x=t(t>0)與曲線 E交于不同的兩點M,N,以線段MN 為直徑作圓 C,圓心為 C.
(1)求橢圓E的方程;
(2)若圓C與y軸相交于不同的兩點A,B,求△ABC的面積的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知過拋物線x2=4y的焦點,斜率為k(k>0)的直線l交拋物線于A(x1,y2),B(x2,y2)(x1<x2)兩點,且|AB|=8.
(1)求直線l的方程;
(2)若點C(x3,y3)是拋物線弧AB上的一點,求△ABC面積的最大值,并求出點C的坐標.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

在平面直角坐標系xOy中,動點P到兩點(-
3
,0),(
3
,0)的距離之和等于4,設點P的軌跡為曲線C,直線l過點E(-1,0)且與曲線C交于A,B兩點.
(1)求曲線C的軌跡方程;
(2)若AB中點橫坐標為-
1
2
,求直線AB的方程;
(3)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知拋物線的頂點在坐標原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設直線l與拋物線交于A、B兩點,與拋物線的準線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知不過坐標原點O的直線L與拋物線y2=2x相交于A、B兩點,且OA⊥OB,OE⊥AB于E.
①求證:直線L過定點;
②求點E的軌跡方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,有一正方形鋼板ABCD缺損一角(圖中的陰影部分),邊緣線OC是以直線AD為對稱軸,以線段AD的中點O為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.若正方形的邊長為2米,問如何畫切割線EF,可使剩余的直角梯形的面積最大?并求其最大值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知點P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點,直線PF1與圓C相切.
(1)求m的值;
(2)求橢圓E的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

在平面直角坐標系xOy中,動點M到直線x=-1的距離等于它到圓F:(x-2)2+y2=1的點的最小距離.
(1)求點M的軌跡方程;
(2)已知過點F的直線與點M的軌跡交于A,B兩點,且|AF|=8,求|BF|的長.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

橢圓C1的焦點在x軸上,中心是坐標原點O,且與橢圓C2
x2
12
+
y2
4
=1
的離心率相同,長軸長是C2長軸長的一半.A(3,1)為C2上一點,OA交C1于P點,P關于x軸的對稱點為Q點,過A作C2的兩條互相垂直的動弦AB,AC,分別交C2于B,C兩點,如圖.

(1)求橢圓C1的標準方程;
(2)求Q點坐標;
(3)求證:B,Q,C三點共線.

查看答案和解析>>

同步練習冊答案