相關(guān)習(xí)題
 0  169410  169418  169424  169428  169434  169436  169440  169446  169448  169454  169460  169464  169466  169470  169476  169478  169484  169488  169490  169494  169496  169500  169502  169504  169505  169506  169508  169509  169510  169512  169514  169518  169520  169524  169526  169530  169536  169538  169544  169548  169550  169554  169560  169566  169568  169574  169578  169580  169586  169590  169596  169604  266669 

科目: 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
兩漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1,又設(shè)l與l2交于點(diǎn)P,l與C兩交點(diǎn)自上而下依次為A、B;
(1)當(dāng)l1與l2夾角為
π
3
,雙曲線焦距為4時(shí),求橢圓C的方程及其離心率;
(2)若
FA
AP
,求λ的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上.若橢圓上的點(diǎn)A(1,
3
2
)
到焦點(diǎn)F1、F2的距離之和等于4.
(1)寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)Q(1,0)的直線與橢圓交于兩點(diǎn)M、N,當(dāng)△OMN的面積取得最大值時(shí),求直線MN的方程.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

設(shè)拋物線y2=4x被直線y=2x+b所截得的弦長為3
5
,則b=______.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線C1:x2=2py(p>0)的切線l,切點(diǎn)A在第二象限,如圖
(Ⅰ)求切點(diǎn)A的縱坐標(biāo);
(Ⅱ)若離心率為
3
2
的橢圓
x2
a2
+
y2
b2
=1(a>b>0)
恰好經(jīng)過切點(diǎn)A,設(shè)切線l交橢圓的另一點(diǎn)為B,記切線l,OA,OB的斜率分別為k,k1,k2,若k1+2k2=4k,求橢圓方程.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

直線y=x-1被y2=x截得的弦長為( 。
A.3B.2
3
C.
10
D.4

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且橢圓Γ的右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)過左焦點(diǎn)F的直線l與橢圓交于A,B兩點(diǎn),是否存在直線l,使得OA⊥OB,O為坐標(biāo)原點(diǎn),若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,拋物線C1:x2=2py(p>0)的焦點(diǎn)為F,橢圓C2
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,C1與C2在第一象限的交點(diǎn)為P(
3
,
1
2

(1)求拋物線C1及橢圓C2的方程;
(2)已知直線l:y=kx+t(k≠0,t>0)與橢圓C2交于不同兩點(diǎn)A、B,點(diǎn)M滿足
AM
+
BM
=
0
,直線FM的斜率為k1,試證明k•k1
-1
4

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為(
2
,0)
,且長軸長為短軸長的
3
倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的下頂點(diǎn)為A,且橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M,N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).設(shè)直線PF1、PF2的斜率分別為k1、k2
(Ⅰ)證明:
1
k1
-
3
k2
=2
;
(Ⅱ)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知曲線C?x2-y2=1及直線l:y=kx-1.
(1)若l與C左支交于兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且△AOB的面積為
2
,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案