【題目】已知向量a=(-2,1),b=(x,y).

(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足a·b=-1的概率;

(2)若x,y在連續(xù)區(qū)間[1,6]上取值,求滿足a·b<0的概率.

【答案】,

【解析】

1)設(shè)表示一個(gè)基本事件,則拋擲兩次骰子的所有基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(16),(2,1),(2,2),……,(6,5),(6,6),共36個(gè).……2

表示事件,即.………………………………………3

包含的基本事件有(11),(3,2),(5,3),共3個(gè).……………………5

答:事件的概率為……………………………………………6

2)用表示事件,即.…………………………………7

試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>…8

構(gòu)成事件的區(qū)域?yàn)?/span>,

如圖所示.……………………………………………10

所以所求的概率為

答:事件的概率為……………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過拋物線y24x的焦點(diǎn)F,且與拋物線相交于AB兩點(diǎn).

1)若AF4,求點(diǎn)A的坐標(biāo);

2)求線段AB的長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析的說法中錯(cuò)誤的是( )

A. 回歸直線一定過樣本中心

B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴(yán)重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù)隨時(shí)刻(時(shí))變化的規(guī)律滿足表達(dá)式,,其中為空氣治理調(diào)節(jié)參數(shù),且

1)令,求的取值范圍;

2)若規(guī)定每天中的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)性;

(2)如果對任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).

(1)如果直線過拋物線的焦點(diǎn),求的值;

(2)如果 ,證明:直線必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某位同學(xué)進(jìn)行社會(huì)實(shí)踐活動(dòng),為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了12月11日至12月15日的白天平均氣溫 (℃)與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):

日期

12月11日

12月12日

12月13日

12月14日

12月15日

平均氣溫(℃)

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程

(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報(bào)12月16日的白天平均氣溫7(℃),請預(yù)測該奶茶店這種飲料的銷量. (參考公式:

查看答案和解析>>

同步練習(xí)冊答案