【題目】已知數(shù)列的前項(xiàng)積為,滿足. 數(shù)列的首項(xiàng)為,且滿足.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記集合,若集合的元素個(gè)數(shù)為,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù)使得成立?如果存在,請(qǐng)寫出滿足的條件,如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1),bn=2n;(2);(3)答案不唯一,見解析
【解析】
(1)當(dāng)時(shí),;當(dāng)時(shí),,即可的的通項(xiàng)公式,由可得,即數(shù)列是常數(shù)數(shù)列,即可求出的通項(xiàng)公式;
(2)參變分離,構(gòu)造函數(shù)列,判斷其增減性,即可求出的取值范圍;
(3)假設(shè)存在,根據(jù)數(shù)列為等比數(shù)列,利用公式求出其前項(xiàng)和,對(duì)分類討論.
(1)因?yàn)?/span>,所以當(dāng)時(shí),
而當(dāng)時(shí),適合上式,所以,因?yàn)?/span>,即
所以數(shù)列是常數(shù)數(shù)列,所以,所以.
(2)由(1)知,不等式即為
設(shè)
因?yàn)?/span>
而
要使只有2解,則有
(3)假設(shè)存在正整數(shù),因?yàn)?/span>
所以有若,則不成立,
所以,,若為奇數(shù),當(dāng)時(shí),,不成立,.
當(dāng)時(shí),設(shè),, 則 .
若q為偶數(shù),設(shè),,則,因?yàn)?/span>,所以.
綜上所述,當(dāng)為大于1的奇數(shù)時(shí),,;
當(dāng)q為偶數(shù)時(shí),不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知條件P:①是奇函數(shù);②值域?yàn)?/span>R;③函數(shù)圖象經(jīng)過(guò)第四象限。則下列函數(shù)中滿足條件Р的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率是,過(guò)點(diǎn)做斜率為的直線,橢圓與直線交于兩點(diǎn),當(dāng)直線垂直于軸時(shí).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)在2019年教師招聘考試中,參加、、、四個(gè)崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性應(yīng)聘人數(shù) | 男性錄用人數(shù) | 男性錄用比例 | 女性應(yīng)聘人數(shù) | 女性錄用人數(shù) | 女性錄用比例 |
269 | 167 | 62% | 40 | 24 | 60% | |
217 | 69 | 32% | 386 | 121 | 31% | |
44 | 26 | 59% | 38 | 22 | 58% | |
3 | 2 | 67% | 3 | 2 | 67% | |
總計(jì) | 533 | 264 | 50% | 467 | 169 | 36% |
(1)從表中所有應(yīng)聘人員中隨機(jī)抽取1人,試估計(jì)此人被錄用的概率;
(2)將應(yīng)聘崗位的男性教師記為,女性教師記為,現(xiàn)從應(yīng)聘崗位的6人中隨機(jī)抽取2人.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人性別不同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1) 若,求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足.
(1)證明:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項(xiàng)和為,若,且對(duì)任意的正整數(shù)n,都有,求整數(shù)的值;
(3)設(shè)數(shù)列滿足,若,且存在正整數(shù)s,t,使得是整數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有窮數(shù)列,,,,.若數(shù)列中各項(xiàng)都是集合的元素,則稱該數(shù)列為數(shù)列.對(duì)于數(shù)列,定義如下操作過(guò)程:從中任取兩項(xiàng),,將的值添在的最后,然后刪除,,這樣得到一個(gè)項(xiàng)的新數(shù)列(約定:一個(gè)數(shù)也視作數(shù)列).若還是數(shù)列,可繼續(xù)實(shí)施操作過(guò)程,得到的新數(shù)列記作,,如此經(jīng)過(guò)次操作后得到的新數(shù)列記作.
(1)設(shè),,請(qǐng)寫出的所有可能的結(jié)果;
(2)求證:對(duì)于一個(gè)項(xiàng)的數(shù)列操作總可以進(jìn)行次;
(3)設(shè),,,,,,,,,求的可能結(jié)果,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代計(jì)時(shí)器的發(fā)明時(shí)間不晚于戰(zhàn)國(guó)時(shí)代(公元前476年~前222年),其中沙漏就是古代利用機(jī)械原理設(shè)計(jì)的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道流到下部容器,如圖,某沙漏由上、下兩個(gè)圓錐容器組成,圓錐的底面圓的直徑和高均為8 cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).若細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆,則此圓錐形沙堆的高為( )
A.2 cmB. cmC. cmD. cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)、的定義域均為,若對(duì)任意,且,具有,則稱函數(shù)為上的單調(diào)非減函數(shù),給出以下命題:① 若關(guān)于點(diǎn)和直線()對(duì)稱,則為周期函數(shù),且是的一個(gè)周期;② 若是周期函數(shù),且關(guān)于直線對(duì)稱,則必關(guān)于無(wú)窮多條直線對(duì)稱;③ 若是單調(diào)非減函數(shù),且關(guān)于無(wú)窮多個(gè)點(diǎn)中心對(duì)稱,則的圖象是一條直線;④ 若是單調(diào)非減函數(shù),且關(guān)于無(wú)窮多條平行于軸的直線對(duì)稱,則是常值函數(shù);以上命題中,所有真命題的序號(hào)是_________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com