【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過點的直線、與圓異于點的交點分別為點和點,與圓異于點的交點分別為點和點,且.求四邊形面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過點P(1,),直線l的方程為x=4.
(1)求橢圓的方程;
(2)已知橢圓內(nèi)一點E(1,0),過點E作一條斜率為k的直線與橢圓交于A,B兩點,交直線l于點M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù),使得k1+k2=k3?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A. 有最大值和最小值
B. 的圖象的對稱中心為()
C. 在上存在單調(diào)遞減區(qū)間
D. 的圖象可由的圖象向左平移個單位而得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的質(zhì)量指數(shù).空氣質(zhì)量按照AQI大小分為六級:0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴(yán)重污染.一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖.利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù)(按這個月總共30天計算)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知與分別是邊長為1與2的正三角形,,四邊形為直角梯形,且,,點為的重心,為中點,平面,為線段上靠近點的三等分點.
(1)求證:平面;
(2)若二面角的余弦值為,試求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)若關(guān)于的方程在區(qū)間內(nèi)有兩個不相等的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在處的切線經(jīng)過點,求的值;
(2)是否存在負(fù)整數(shù),使函數(shù)的極大值為正值?若存在,求出所有負(fù)整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展一次“五四”知識競賽活動,共有三個問題,其中第1、2題滿分都是15分,第3題滿分是20分.每個問題或者得滿分,或者得0分.活動結(jié)果顯示,每個參賽選手至少答對一道題,有6名選手只答對其中一道題,有12名選手只答對其中兩道題.答對第1題的人數(shù)與答對第2題的人數(shù)之和為26,答對第1的人數(shù)與答對第3題的人數(shù)之和為24,答對第2題的人數(shù)與答對第3題的人數(shù)之和為22.則參賽選手中三道題全答對的人數(shù)是____;所有參賽選手的平均分是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com