【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過點(diǎn)P(1,),直線l的方程為x=4.

(1)求橢圓的方程;

(2)已知橢圓內(nèi)一點(diǎn)E(1,0),過點(diǎn)E作一條斜率為k的直線與橢圓交于A,B兩點(diǎn),交直線l于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù),使得k1+k2k3?若存在,求出的值;若不存在,請說明理由.

【答案】(1) .

(2) 存在,使得

【解析】

(1)根據(jù)已知得到a,b的方程組,解方程組即得橢圓的方程.(2) 設(shè)直線的方程為:,利用韋達(dá)定理求出,,即得的值.

(1)因?yàn)闄E圓的離心率為,所以

又橢圓過點(diǎn),所以

所以,,所以橢圓方程為

(2)設(shè)直線的方程為:,令,則,所以點(diǎn),

設(shè),

所以

,可得

所以,,

所以

又因?yàn)?/span>,所以,

所以存在,使得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

1)當(dāng)時,求的最大值和最小值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某野生動物保護(hù)區(qū)內(nèi)某種野生動物的數(shù)量,調(diào)查人員某天逮到這種動物1200只作好標(biāo)記后放回,經(jīng)過一星期后,又逮到這種動物1000只,其中作過標(biāo)記的有100只,按概率的方法估算,保護(hù)區(qū)內(nèi)有多少只該種動物.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,記.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界曲線符合函數(shù)模型.園區(qū)服務(wù)中心P在x軸正半軸上,PO=百米.

(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長廊OM,求OM的最短長度;

(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某兒童樂園在六一兒童節(jié)推出了一項(xiàng)趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個;

其余情況獎勵飲料一瓶.

假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動.

)求小亮獲得玩具的概率;

)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;

(2)若對于任意,都有成立,求實(shí)數(shù)的取值范圍;

(3)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知)在區(qū)間上的最大值與最小值之和為,其中.

1)直接寫出的解析式和單調(diào)性;

2)若恒成立,求實(shí)數(shù)的取值范圍;

3)設(shè),若,使得對,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點(diǎn)的直線、與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),且.求四邊形面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案