【題目】設函數(shù)f(x)=|x﹣ |+|x+m|(m>0)
(1)證明:f(x)≥4;
(2)若f(2)>5,求m的取值范圍.

【答案】
(1)

證明:由m>0,有f(x)=|x﹣ |+|x+m|≥|﹣(x﹣ )+x+m|= +m≥4,

當且僅當 =m,即m=2時取“=”,所以f(x)≥4成立.


(2)

解:f(2)=|2﹣ |+|2+m|.

<2,即m>2時,f(2)=m﹣ +4,由f(2)>5,求得m>

≥2,即0<m≤2時,f(2)= +m,由f(2)>5,求得0<m<1.

綜上,m的取值范圍是(0,1)∪( ,+∞)


【解析】(1)由m>0,由f(x)的解析式利用絕對值三角不等式證得結論.(2)分當 <2時和當 ≥2時兩種情況,分別根據(jù)f(2)>5,求得m的范圍,再把所得m的范圍取并集,即得所求.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應求,則從外部調劑,此時每件調劑商品可獲利30元.
(1)若商店一天購進該商品10件,求當天的利潤y(單位:元)關于當天需求量n(單位:件,n∈N)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件),整理得表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

①假設該店在這50天內每天購進10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進10件該商品,記“當天的利潤在區(qū)間[400,550]”為事件A,求P(A)的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定義域內有兩個不同的極值點.
(1)求a的取值范圍;
(2)記兩個極值點分別為x1 , x2 , 且x1<x2 . 已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某街道居委會擬在EF地段的居民樓正南方向的空白地段AE上建一個活動中心,其中AE長為30米.活動中心東西走向,與居民樓平行.從東向西看活動中心的截面圖的下部分是長方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長GE不超過2.5米,其中該太陽光線與水平線的夾角θ滿足tan θ.

(1)若設計AB=18米,AD=6米,問能否保證上述采光要求?

(2)在保證上述采光要求的前提下,如何設計ABAD的長度,可使得活動中心的截面面積最大? (注:計算中π3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.

①存在點,使得//平面;

②對于任意的點,平面平面

③存在點,使得平面;

④對于任意的點,四棱錐的體積均不變.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:,直線 ,過的一條動直線與直線相交于N,與圓C相交于P,Q兩點,MPQ中點.

(1)時,求直線的方程

(2),試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項為正的等比數(shù)列{an}的前n項和為Sn , S4=30,過點P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個方向向量為(﹣1,﹣1)
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,數(shù)列{bn}的前n項和為Tn , 證明:對于任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為分別為橢圓的左右焦點,為橢圓的短軸頂點,且.

(1)求橢圓的方程

(2)過作直線交橢圓于兩點,求的面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ADCE中,AD∥EC,∠ADC=90°,AB⊥EC,AB=EB=1, .將△ABE沿AB折到△ABE1的位置,使∠BE1C=90°.M,N分別為BE1 , CD的中點.如圖2.

(1)求證:MN∥平面ADE1
(2)求證:AM⊥E1C;
(3)求平面AE1N與平面BE1C所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案