【題目】某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關.若建造宿舍的所有費用(萬元)和宿舍與工廠的距離的關系為: .為了交通方便,工廠與宿舍之間還要修一條簡易便道,已知修路每公里成本為萬元,工廠一次性補貼職工交通費萬元.為建造宿舍、修路費用與給職工的補貼之和.

的表達式;

宿舍應建在離工廠多遠處,可使總費用最小,并求最小值.

【答案】見解析

【解析】試題分析:(1利用題意提取有關知識,利用函數(shù)模型建立表達式;(2利用導數(shù)研究函數(shù)的單調(diào)性,進而求出函數(shù)的最小值.

試題解析:

整理得

所以上單調(diào)遞減,在上單調(diào)遞增

故當時, 取得最小值

答:⑴

宿舍應建在離工廠處,可使總費用最小,最小值為萬元

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】關于下列命題:

①若是第一象限角,且,則

②函數(shù)是偶函數(shù);

③函數(shù)的一個對稱中心是

④函數(shù)上是增函數(shù),

所有正確命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)=2sin(π-x)sin x-(sin x-cos x)2.

(1)f(x)的單調(diào)遞增區(qū)間;

(2)y=f(x)的圖象上所有點的橫坐標伸長到原來的2(縱坐標不變),再把得到的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象,g的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關.若建造宿舍的所有費用(萬元)和宿舍與工廠的距離的關系為: .為了交通方便,工廠與宿舍之間還要修一條簡易便道,已知修路每公里成本為萬元,工廠一次性補貼職工交通費萬元.為建造宿舍修路費用與給職工的補貼之和.

的表達式;

宿舍應建在離工廠多遠處,可使總費用最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小值為

⑴設,求證: 上單調(diào)遞增;

⑵求證: ;

⑶求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點A(2,4).

(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,0)滿足:存在圓M上的兩點P和Q,使得 ,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點的中點,點的中點.

(I)請在圖中所給的點中找出兩個點,使得這兩個點所在直線與平面垂直,并給出證明;

(II)求二面角的余弦值;

(III)在線段上是否存在點,使得平面?如果存在,求出的長度,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)同時滿足以下三個條件:

①對任意的,總有;

;

③若,,則有成立,則稱友誼函數(shù)”.

)若已知友誼函數(shù),求的值.

)分別判斷函數(shù)在區(qū)間上是否為友誼函數(shù),并給出理由.

)已知友誼函數(shù),且,求證:

查看答案和解析>>

同步練習冊答案