【題目】已知函數(shù)的最小值為.
⑴設,求證: 在上單調(diào)遞增;
⑵求證: ;
⑶求函數(shù)的最小值.
【答案】⑴見解析⑵見解析⑶見解析
【解析】試題分析:(1)先求導求出,再求導,利用導數(shù)的符號變換得到函數(shù)的單調(diào)區(qū)間;(2)由⑴可知在上單調(diào)遞增,再利用零點存在定理及函數(shù)的單調(diào)性進行求解;(3)分離參數(shù),合理構(gòu)造,利用導數(shù)研究函數(shù)的最值.
試題解析:⑴
∵
∴在上單調(diào)遞增
⑵由⑴可知在上單調(diào)遞增
∵
∴存在唯一的零點,設為,則 且
當時, ;當時,
從而在上單調(diào)遞增,在上單調(diào)遞減
所以的最小值
∵ ∴ ∴
∴(當且僅當時取等號)
∵ ∴
(第二問也可證明,從而得到)
⑶
同⑴方法可證得在上單調(diào)遞增
∵
∴
∴存在唯一的零點,設為,則 且
所以的最小值為
∵ ∴
∴,即
由⑵可知
∴=
∵在上單調(diào)遞增
∴
所以的最小值為
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓心為,定點,P為圓上一點,線段上一點N滿足,直線上一點Q,滿足.
(Ⅰ) 求點Q的軌跡C的方程;
(Ⅱ) O為坐標原點, 是以為直徑的圓,直線與相切,并與軌跡C交于不同的兩點A,B. 當且滿足時,求△OAB面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射擊運動員射擊1次,命中10環(huán)、9環(huán)、8環(huán)、7環(huán)(假設命中的環(huán)數(shù)都為整數(shù))的概率分別為0.20,0.22,0.25,0.28. 計算該運動員在1次射擊中:
(1)至少命中7環(huán)的概率;
(2)命中不足8環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用(萬元)和宿舍與工廠的距離的關(guān)系為: .為了交通方便,工廠與宿舍之間還要修一條簡易便道,已知修路每公里成本為萬元,工廠一次性補貼職工交通費萬元.設為建造宿舍、修路費用與給職工的補貼之和.
⑴求的表達式;
⑵宿舍應建在離工廠多遠處,可使總費用最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知知矩形中,點是邊上的點, 與相交于點,且,現(xiàn)將沿折起,如圖2,點的位置記為,此時.
(1)求證: 面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)△ABC中,角A,B,C所對的邊分別為a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com