【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線()與橢圓交于,兩點(diǎn)(點(diǎn)在軸的上方).
(1)若,求的面積;
(2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)存在實(shí)數(shù),使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)
【解析】
(1)由橢圓方程求得,得,由直線方程與橢圓方程聯(lián)立可解得交點(diǎn)坐標(biāo),當(dāng)然這里只要得出點(diǎn)的縱坐標(biāo),即可求得三角形面積;
(2)這類(lèi)問(wèn)題,都是假設(shè)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn),則有.設(shè),,從而有,把直線方程與橢圓方程聯(lián)立消元后可得,代入,求得值,說(shuō)明存在,求不出值說(shuō)明假設(shè)錯(cuò)誤,不存在。
(1)設(shè)橢圓的半焦距為,因?yàn)?/span>,,,所以,,,
聯(lián)立化簡(jiǎn)得,解得或,又點(diǎn)在軸的上方,所以,所以,
所以的面積為.
(2)假設(shè)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn),則有.
設(shè),,
聯(lián)立消去得,(*)
則,.
由,所以,即,
整理得,
所以,解得.
經(jīng)檢驗(yàn)時(shí)(*)中,
所以存在實(shí)數(shù),使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對(duì)任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請(qǐng)完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計(jì) | |
女員工 | 16 | ||
男員工 | 14 | ||
合計(jì) | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有大小均勻的6個(gè)小球,其中有紅色球4個(gè),編號(hào)分別為1,2,3,4;白色球2個(gè),編號(hào)分別為4,5,從盒子中任取3個(gè)小球(假設(shè)取到任何—個(gè)小球的可能性相同).
(1)求取出的3個(gè)小球中,含有編號(hào)為4的小球的概率;
(2)在取出的3個(gè)小球中,小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程
(2)若把月收入不低于2萬(wàn)元稱(chēng)為“高收入者”.
試?yán)茫?/span>1)的結(jié)果,估計(jì)他36歲時(shí)能否稱(chēng)為“高收入者”?能否有95%的把握認(rèn)為年齡與收入有關(guān)系?
附注:①.參考數(shù)據(jù):,,,,,,,其中,取,
②.參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的焦點(diǎn)是,、是曲線上不同兩點(diǎn),且存在實(shí)數(shù)使得,曲線在點(diǎn)、處的兩條切線相交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)點(diǎn)在軸上,以為直徑的圓與的另一交點(diǎn)恰好是的中點(diǎn),當(dāng)時(shí),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),證明:對(duì)任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將三棱錐與拼接得到如圖所示的多面體,其中,,,分別為,,,的中點(diǎn),.
(1)當(dāng)點(diǎn)在直線上時(shí),證明:平面;
(2)若與均為面積為的等邊三角形,求該多面體體積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com