古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù)。如三角形數(shù)1,3,6,10···,第n個(gè)三角形數(shù)為。記第n個(gè)k邊形數(shù)為N(n,k)(),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù) N(n,3)=
正方形數(shù) N(n,4)=
五邊形數(shù) N(n,5)=
六邊形數(shù) N(n,6)=
可以推測N(n,k)的表達(dá)式,由此計(jì)算N(10,24)= ____________
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察分析下表中的數(shù)據(jù):
多面體 | 面數(shù)() | 頂點(diǎn)數(shù)() | 棱數(shù)() |
三棱錐 | 5 | 6 | 9 |
五棱錐 | 6 | 6 | 10 |
立方體 | 6 | 8 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)等差數(shù)列的前項(xiàng)和為,則,,,
成等差數(shù)列.類比以上結(jié)論有:設(shè)等比數(shù)列的前項(xiàng)積為,則成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
下列推理中屬于歸納推理且結(jié)論正確的是( )
A.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:Sn=n2 |
B.由f(x)=xcos x滿足f(-x)=-f(x)對(duì)?x∈R都成立,推斷:f(x)=xcos x為奇函數(shù) |
C.由圓x2+y2=r2的面積S=πr2,推斷:橢圓=1(a>b>0)的面積S=πab |
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對(duì)一切n∈N*,(n+1)2>2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com