【題目】已知二次函數(shù),且,函數(shù)的圖象與直線相切.

(1)求的解析式;

(2)若當(dāng)時, 恒成立,求實數(shù)的取值范圍;

(3)是否存在區(qū)間,使得在區(qū)間上的值域恰好為?若存在,請求出區(qū)間,若不存在,請說明理由.

【答案】(1);(2);(3)

【解析】試題分析:(1由題意可知, ,又圖象與直線相切,方程有兩個相等的實數(shù)根,得,解得答案;(2),恒成立,則,故;(3)由題可知, ,有,故為方程的兩個根,可得,所求區(qū)間為.

試題解析:

(1)由,可得,由函數(shù)的圖象與直線相切,可知方程有兩個相等的實數(shù)根,方程整理得,所以,代入,可得,解得,由,得,函數(shù)的解析式為.

(2)由,得,故.

(3)由,可得函數(shù)的對稱軸,函數(shù)的最大值為1,故由,可得,故當(dāng)時,函數(shù)單調(diào)遞增有: ,故為方程的兩個根,整理方程為,解得,由,可得,所求區(qū)間為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域為(
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點 的極坐標(biāo)是,曲線 的極坐標(biāo)方程為.以極點為坐標(biāo)原點,極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線 經(jīng)過點.

(1)寫出直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;

(2)若直線 和曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為平行四邊形,且,, 分別為中點,過作平面分別與線段相交于點.

(Ⅰ)在圖中作出平面使面 (不要求證明);

(II)若,在(Ⅰ)的條件下求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上.

1求橢圓的方程;

2過點的直線,交橢圓兩點,點在橢圓上,坐標(biāo)原點恰為的重心,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下

方式

實施地點

大雨

中雨

小雨

模擬實驗次數(shù)

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請根據(jù)統(tǒng)計數(shù)據(jù):

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區(qū)的干旱程度,當(dāng)雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記甲、乙、丙三地中緩解旱情的個數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙ 與⊙ ,以, 分別為左右焦點的橢圓 經(jīng)過兩圓的交點.

(Ⅰ)求橢圓的方程;

(Ⅱ), 分別為橢圓的左右頂點, , , 是橢圓上非頂點的三點,若, ,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列幾個命題
①奇函數(shù)的圖象一定通過原點
②函數(shù)y= 是偶函數(shù),但不是奇函數(shù)
③函數(shù)f(x)=ax1+3的圖象一定過定點P,則P點的坐標(biāo)是(1,4)
④若f(x+1)為偶函數(shù),則有f(x+1)=f(﹣x﹣1)
⑤若函數(shù)f(x)= 在R上的增函數(shù),則實數(shù)a的取值范圍為[4,8)
其中正確的命題序號為

查看答案和解析>>

同步練習(xí)冊答案