【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,點 的極坐標是,曲線 的極坐標方程為.以極點為坐標原點,極軸為 軸的正半軸建立平面直角坐標系,斜率為 的直線 經(jīng)過點.
(1)寫出直線 的參數(shù)方程和曲線 的直角坐標方程;
(2)若直線 和曲線相交于兩點,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中
①函數(shù)f(x)=( )x的遞減區(qū)間是(﹣∞,+∞);
②若函數(shù)f(x)= ,則函數(shù)定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=2x2﹣4x.
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)用描點法畫出它的圖象;
(3)求出函數(shù)的最值,并分析函數(shù)的單調性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: 和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)點是曲線與軸正半軸的交點,點, 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為( )
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)且,且,函數(shù)的圖象與直線相切.
(1)求的解析式;
(2)若當時, 恒成立,求實數(shù)的取值范圍;
(3)是否存在區(qū)間,使得在區(qū)間上的值域恰好為?若存在,請求出區(qū)間,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體,從學生群體中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如下表:
(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;
(II)從所調查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;
(III)將頻率視為概率,現(xiàn)從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作,求事件“”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com