【題目】某手機廠商推出一次智能手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:

(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大小(不計算具體值,給出結論即可);

(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取2名用戶,求2名用戶評分小于90分的概率.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:(1)根據(jù)數(shù)據(jù)越集中方差越小,可直接得到結論,(2)先根據(jù)分層抽樣確定評分不低于80分的用戶數(shù),以及評分小于90分的人數(shù),再利用枚舉法分別確定樣本總數(shù)以及取樣數(shù),最后根據(jù)古典概型概率公式求概率.

試題解析:(Ⅰ)女性用戶和男性用戶的頻率分布直方圖分別如下左、右圖:

由圖可得女性用戶的波動小,男性用戶的波動大.

(Ⅱ)運用分層抽樣從男性用戶中抽取名用戶,評分不低于分有人,其中評分小于分的人數(shù)為,記為,評分不小于分的人數(shù)為,記為,從人人任取人,基本事件空間為 ,共有個元素. 其中把“兩名用戶評分都小于分”記作

,共有個元素.

所以兩名用戶評分都小于分的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某項科研活動共進行了5次試驗,其數(shù)據(jù)如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)從5次特征量的試驗數(shù)據(jù)中隨機地抽取兩個數(shù)據(jù),求至少有一個大于600的概率;

(2)求特征量關于的線性回歸方程;并預測當特征量為570時特征量的值.

(附:回歸直線的斜率和截距的最小二乘法估計公式分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的展開式中第五項的系數(shù)與第三項的系數(shù)的比是10∶1.

(1)求展開式中各項系數(shù)的和;

(2)求展開式中含的項;

(3)求展開式中系數(shù)最大的項和二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于二項式(x-1)2005有下列命題:

①該二項展開式中非常數(shù)項的系數(shù)和是1;

②該二項展開式中第六項為x1999;

③該二項展開式中系數(shù)最大的項是第1002項;

④當x=2006時,(x-1)2005除以2006的余數(shù)是2005。

其中正確命題的序號是__________。(注:把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,底面ABCD中,ABAD,AD2,AB3,BCBE7,DCE是邊長為6的正三角形

(1)求證平面DEC⊥平面BDE;

(2)求點A到平面BDE的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長為2的正三角形.

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 上的點, 平面;

(Ⅰ)求證: 平面

(Ⅱ)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小張同學計劃在期末考試結束后,和其他小伙伴一塊兒外出旅游,增長見識.旅行社為他們提供了省內(nèi)的都江堰、峨眉山、九寨溝和省外的麗江古城,黃果樹瀑布和鳳凰古城這六個景點,由于時間和距離等原因,只能從中任取4個景點進行參觀,其中黃果樹瀑布不能第一個參觀,且最后參觀的是省內(nèi)景點,則不同的旅游順序有( )

A. 54種 B. 72種 C. 120種 D. 144種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌汽車的店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;

(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案