【題目】已知的展開式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10∶1.

(1)求展開式中各項(xiàng)系數(shù)的和;

(2)求展開式中含的項(xiàng);

(3)求展開式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).

【答案】(1)1;(2)-16.(3)答案見解析.

【解析】試題分析:

(1)利用賦值法,令 可得展開式中各項(xiàng)系數(shù)的和是1.

(2)首先寫出通項(xiàng)公式,據(jù)此可得展開式中含的項(xiàng)是-16.

(3)由題意求解不等式即可求得系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng)分別為T7=1 792T5=1 120.

試題解析:

由題意知,第五項(xiàng)系數(shù)為,第三項(xiàng)的系數(shù)為,則有,化簡(jiǎn)得n2-5n-24=0,解得n=8或n=-3(舍去).

(1)令x=1得各項(xiàng)系數(shù)的和為(1-2)8=1.

(2)通項(xiàng)公式 ,

-2k,則k=1,故展開式中含的項(xiàng)為T2=-16.

(3)設(shè)展開式中的第k項(xiàng),第k+1項(xiàng),第k+2項(xiàng)的系數(shù)絕對(duì)值分別為

, , ,

若第k+1項(xiàng)的系數(shù)絕對(duì)值最大,則解得5.

T6的系數(shù)為負(fù),∴系數(shù)最大的項(xiàng)為T7=1 792.

n=8知第5項(xiàng)二項(xiàng)式系數(shù)最大,此時(shí)T5=1 120.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績(jī)情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(jī)(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:

組號(hào)

分組

頻數(shù)

頻率

第1組

[50,60)

5

0.05

第2組

[60,70)

0.35

第3組

[70,80)

30

第4組

[80,90)

20

0.20

第5組

[90,100]

10

0.10

合計(jì)

100

1.00

(Ⅰ)求的值;

(Ⅱ)若從成績(jī)較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

(1)求及基地的預(yù)期收益;

(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時(shí)收益為萬元,有雨時(shí)收益為萬元,且額外聘請(qǐng)工人的成本為元,問該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△A1B1C1不全等,且A1B1∥AB,B1C1∥BC,C1A1∥CA.求證:AA1,BB1,CC1交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn), 為拋物線上不同的兩點(diǎn), 分別是拋物線在點(diǎn)、點(diǎn)處的切線, 的交點(diǎn).

(1)當(dāng)直線經(jīng)過焦點(diǎn)時(shí),求證:點(diǎn)在定直線上;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)用定義證明:函數(shù)在區(qū)間上是減函數(shù);

(2)若函數(shù)是偶函數(shù),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,,其中(e是自然常數(shù)),

(1)當(dāng)時(shí), 求的單調(diào)區(qū)間、極值;

(2)是否存在,使的最小值是3,若存在求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)廠商推出一次智能手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:

(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的方差大。ú挥(jì)算具體值,給出結(jié)論即可);

(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意取2名用戶,求2名用戶評(píng)分小于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n3,再?gòu)倪@批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果n4,再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).

假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.

(1)求這批產(chǎn)品通過檢驗(yàn)的概率;

(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案