【題目】已知 ,,其中(e是自然常數(shù)),
(1)當(dāng)時, 求的單調(diào)區(qū)間、極值;
(2)是否存在,使的最小值是3,若存在求出的值,若不存在,說明理由.
【答案】(1)答案見解析;(2).
【解析】試題分析:
(1)由導(dǎo)函數(shù)與原函數(shù)的關(guān)系可得函數(shù)的單調(diào)遞減區(qū)間為 ,單調(diào)遞增區(qū)間為 ,函數(shù)的極小值為 .
(2)由題意結(jié)合導(dǎo)函數(shù)與原函數(shù)的性質(zhì)可得 .
試題解析:
(1),
∴當(dāng)時,,此時單調(diào)遞減
當(dāng)時,,此時單調(diào)遞增
∴的極小值為
(2)假設(shè)存在實數(shù),使()有最小值3,
① 當(dāng)時,在上單調(diào)遞減,,
②當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增
,,滿足條件.
③ 當(dāng)時,在上單調(diào)遞減,,(舍去)
所以,此時無最小值.
綜上,存在實數(shù),使得當(dāng)時有最小值3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點, , 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作圓的一條切線交橢圓于, 兩點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,M、N分別是A1B1、B1C1的中點,問:
(1)AM和CN是否是異面直線?說明理由;
(2)D1B和CC1是否是異面直線?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中第五項的系數(shù)與第三項的系數(shù)的比是10∶1.
(1)求展開式中各項系數(shù)的和;
(2)求展開式中含的項;
(3)求展開式中系數(shù)最大的項和二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。
⑴記所抽取的3道題中,甲答對的題數(shù)為X,則X的分布列為____________;
⑵記乙能答對的題數(shù)為Y,則Y的期望為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于二項式(x-1)2005有下列命題:
①該二項展開式中非常數(shù)項的系數(shù)和是1;
②該二項展開式中第六項為x1999;
③該二項展開式中系數(shù)最大的項是第1002項;
④當(dāng)x=2006時,(x-1)2005除以2006的余數(shù)是2005。
其中正確命題的序號是__________。(注:把你認(rèn)為正確的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,底面ABCD中,AB⊥AD,AD=2,AB=3,BC=BE=7,△DCE是邊長為6的正三角形.
(1)求證:平面DEC⊥平面BDE;
(2)求點A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一片森林原面積為.計劃從某年開始,每年砍伐一些樹林,且每年砍伐面積的百分比相等.并計劃砍伐到原面積的一半時,所用時間是10年.為保護生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.
(1)求每年砍伐面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)為保護生態(tài)環(huán)境,今后最多還能砍伐多少年?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com