精英家教網 > 高中數學 > 題目詳情

【題目】給定區(qū)域D: .令點集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的點},則T中的點共確定條不同的直線.

【答案】6
【解析】解:畫出不等式表示的平面區(qū)域,如圖.
作出目標函數對應的直線,因為直線z=x+y與直線x+y=4平行,故直線z=x+y過直線x+y=4上的整數點:(4,0),(3,1),(2,2),(1,3)或(0,4)時,直線的縱截距最大,z最大;
當直線過(0,1)時,直線的縱截距最小,z最小,從而點集T={(4,0),(3,1),(2,2),(1,3),(0,4),(0,1)},經過這六個點的直線一共有6條.
即T中的點共確定6條不同的直線.
所以答案是:6.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】1)設0x,求函數yx32x)的最大值;

2)解關于x的不等式x2-a+1x+a0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某小區(qū)抽取100戶居民進行月用電量調查,發(fā)現其用電量都在50至350度之間,頻率分布直方圖如圖所示:

(Ⅰ)直方圖中x的值為
(Ⅱ)在這些用戶中,用電量落在區(qū)間[100,250)內的戶數為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F分別是PA,PC的中點.

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關系,并加以證明;
(2)設(1)中的直線l與圓O的另一個交點為D,且點Q滿足 .記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設n是正整數,r為正有理數.
(1)求函數f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(參考數據:
(2)證明:
(3)設x∈R,記[x]為不小于x的最小整數,例如 .令 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間共有12名工人,隨機抽取6名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)根據莖葉圖計算樣本均值;
(2)日加工零件個數大于樣本均值的工人為優(yōu)秀工人.根據莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在四棱錐中,底面是矩形,平面,,分別是的中點,與平面所成的角的正切值是;

(1)求證:平面

(2)求二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}的公比為q,記bn=amn1+1+amn1+2+…+amn1+m , cn=amn1+1amn1+2…amn1+m , (m,n∈N*),則以下結論一定正確的是(
A.數列{bn}為等差數列,公差為qm
B.數列{bn}為等比數列,公比為q2m
C.數列{cn}為等比數列,公比為
D.數列{cn}為等比數列,公比為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)

(1)求證:CD⊥平面ADD1A1
(2)若直線AA1與平面AB1C所成角的正弦值為 ,求k的值
(3)現將與四棱柱ABCD﹣A1B1C1D1形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為f(k),寫出f(k)的解析式.(直接寫出答案,不必說明理由)

查看答案和解析>>

同步練習冊答案