【題目】如圖,是等邊三角形, 是邊上的動點(含端點),記,.
(1)求的最大值;
(2)若,求的面積.
【答案】(1)當α=,即D為BC中點時,原式取最大值;(2).
【解析】
(1)由題意可得β=α+,根據(jù)三角函數(shù)和差公式及輔助角公式化簡即可求出其最大值。
(2)根據(jù)三角函數(shù)差角公式求得sinα,再由正弦定理,求得AB的長度;進而求得三角形面積。
(1)由△ABC是等邊三角形,得β=α+,
0≤α≤,故2cos-cos=2cos-cos=sin,
故當α=,即D為BC中點時,原式取最大值
(2)由cos β= ,得sin β=,
故sin α=sin=sin βcos-cos βsin=,
由正弦定理,
故AB= BD=×1= ,故S△ABD=AB·BD·sin B=
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即,其中a、b、c分別為內(nèi)角A、B、C的對邊.若,,則面積S的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一名高二學(xué)生盼望2020年進入某名牌大學(xué)學(xué)習(xí),假設(shè)該名牌大學(xué)有以下條件之一均可錄。孩2020年2月通過考試進入國家數(shù)學(xué)奧賽集訓(xùn)隊(集訓(xùn)隊從2019年10月省數(shù)學(xué)競賽一等獎中選拔):②2020年3月自主招生考試通過并且達到2020年6月高考重點分數(shù)線,③2020年6月高考達到該校錄取分數(shù)線(該校錄取分數(shù)線高于重點線),該學(xué)生具備參加省數(shù)學(xué)競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表
省數(shù)學(xué)競賽一等獎 | 自主招生通過 | 高考達重點線 | 高考達該校分數(shù)線 |
0.5 | 0.6 | 0.9 | 0.7 |
若該學(xué)生數(shù)學(xué)競賽獲省一等獎,則該學(xué)生估計進入國家集訓(xùn)隊的概率是0.2.若進入國家集訓(xùn)隊,則提前錄取,若未被錄取,則再按②、③順序依次錄。呵懊嬉呀(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達重點線才能錄。
(Ⅰ)求該學(xué)生參加自主招生考試的概率;
(Ⅱ)求該學(xué)生參加考試的次數(shù)的分布列及數(shù)學(xué)期望;
(Ⅲ)求該學(xué)生被該校錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[0,3]上有最大值4和最小值1.設(shè)f(x)=,
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù).在平面直角坐標系中,已知點,直線:,曲線:.與軸交于點、與交于點.、分別是曲線與線段上的動點.
(1)用表示點到點距離;
(2)設(shè),,線段的中點在直線,求的面積;
(3)設(shè),是否存在以、為鄰邊的矩形,使得點在上?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了實現(xiàn)綠色發(fā)展,避免浪費能源,某市政府計劃對居民用電實行階梯收費的方法.為此,相關(guān)部門隨機調(diào)查了20戶居民六月分的月用電量(單位:kwh)和家庭月收入(單位:方元)月用電量數(shù)據(jù)如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入數(shù)據(jù)如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8
(1)根據(jù)國家發(fā)改委的指示精神,該市實行3階階梯電價,使7%的用戶在第一檔,電價為0.56元/kwh,20%的用戶在第二檔,電價為0.61元/kwh,5%的用戶在第三檔,電價為0.86元/kwh,試求出居民用電費用Q與用電量x間的函數(shù)關(guān)系式;
(2)以家庭月收入t為橫坐標,電量x為縱坐標作出散點圖(如圖)求出x關(guān)于t的回歸直線方程(系數(shù)四舍五入保留整數(shù));
(3)小明家庭月收入7000元,按上述關(guān)系,估計小明家月支出電費多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地1~10歲男童年齡(單位:歲)與身高的中位數(shù) (單位,如表所示:
/歲 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
76.5 | 88.5 | 96.8 | 104.1 | 111.3 | 117.7 | 124 | 130 | 135.4 | 140.2 |
對上表的數(shù)據(jù)作初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
112.45 | 82.50 | 3947.71 | 566.85 |
(1)求關(guān)于的線性回歸方程(回歸方程系數(shù)精確到0.01);
(2)某同學(xué)認為方程更適合作為關(guān)于的回歸方程模型,他求得的回歸方程是.經(jīng)調(diào)查,該地11歲男童身高的中位數(shù)為,與(1)中的線性回歸方程比較,哪個回歸方程的擬合效果更好?
(3)從6歲~10歲男童中每個年齡階段各挑選一位男童參加表演(假設(shè)該年齡段身高的中位數(shù)就是該男童的身高).再從這5位男童中任挑選兩人表演“二重唱”,則“二重唱”男童身高滿足的概率是多少?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)的導(dǎo)函數(shù)f′(x)的圖像如圖所示,則下列結(jié)論正確的是( )
A.f(x)在(-3,-1)上先增后減B.x=-2是f(x)極小值點
C.f(x)在(-1,1)上是增函數(shù)D.x=1是函數(shù)f(x)的極大值點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際象棋比賽中.勝局一得1分,平一局得0.5分,負一局得0分。今有8名選手進行單循環(huán)比賽(每兩人均賽一局),賽完后、發(fā)現(xiàn)各選手的得分均不相同,當按得分由大到小排列好名次后,第四名選手得4.5分,第二名的得分等于最后四名選手得分總和.問前三名選手各得多少分?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com