【題目】已知平面內(nèi)動點與點,連線的斜率之積為.

1)求動點的軌跡的方程;

2)過點的直線與曲線交于,兩點,直線,與直線分別交于兩點.求證:以為直徑的圓恒過定點.

【答案】1;(2)見解析

【解析】

(1) 設點的坐標,再根據(jù)列式求解,同時注意定義域即可;

(2)聯(lián)立與橢圓的方程,設,,得出韋達定理,進而求得的坐標表達式,進而求得的長及的中點,寫出以為直徑的圓的方程,即可分析出所過定點.

1)設點的坐標為,則由,可得

整理得,即動點的軌跡的方程

2)當的斜率存在時,設的方程為,與曲線的方程聯(lián)立,消去

,,則,

直線的方程為,令,得,即,

同理,

線段中點的縱坐標為

故以為直徑的圓的方程為:

:,解得

此時以為直徑的圓過點

軸時,,,

則以為直徑的圓的方程為,也過點,

所以,以為直徑的圓恒過點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系,.以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,點上的動點,的中點.

1)請求出點軌跡的直角坐標方程;

2)設點的極坐標為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)=x22x+1的圖象與函數(shù)gx)=3cosπx的圖象所有交點的橫坐標之和等于(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程為

1)設橢圓的左右焦點分別為、,點在橢圓上運動,求的值;

2)設直線和圓相切,和橢圓交于、兩點,為原點,線段、分別和圓交于、兩點,設、的面積分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①,且,②,且,③,且這三個條件中任選一個,補充在下面問題中,若問題中的存在,求出和數(shù)列的通項公式與前項和;若不存在,請說明理由.

為各項均為正數(shù)的數(shù)列的前項和,滿足________,是否存在,使得數(shù)列成為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期的楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形組成的,將它沿虛線對折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.

1)求橢圓C的方程;

2)設P的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點,求a的取值范圍;

(Ⅱ)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1是由組成的一個平面圖形,其中的高,,,,將分別沿著,折起,使得重合于點B,G的中點,如圖2.

1)求證:平面平面;

2)若,求點C到平面的距離.

查看答案和解析>>

同步練習冊答案