【題目】某商場經營一批進價是每件30元的商品,在市場銷售中發(fā)現(xiàn),此商品的銷售單價元與日銷售量件之間有如下關系

銷售單價(元)

30

40

45

50

日銷售量(件)

60

30

15

0

(1)在平面直角坐標系中,根據(jù)表中提供的數(shù)據(jù)描出實數(shù)對對應的點,并確定的一個函數(shù)關系式;

(2)設經營此商品的日銷售利潤為元,根據(jù)上述關系式寫出關于的函數(shù)關系式,

并指出銷售單價為多少時,才能獲得最大日銷售利潤。

【答案】(1)(2)當銷售單價為40元時,所獲利潤最大(3)

【解析】

試題(1)由平面直角坐標系中畫出的各點猜測為一次函數(shù),求出解析式后需要驗證成立;

(2)銷售利潤函數(shù)=(售價﹣進價)×銷量,代入數(shù)值得二次函數(shù),求出最值.

試題解析:

坐標系畫點:

,解得:

檢驗成立。

(2)

當銷售單價為40元時,所獲利潤最大。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設{an}和{bn}是兩個等差數(shù)列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù).(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數(shù)列;
(2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當n≥m時, >M;或者存在正整數(shù)m,使得cm , cm+1 , cm+2 , …是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P-ABCD的底面為等腰梯形, AB∥CD,AC⊥BD,垂足為H, PH是四棱錐的高,E為AD中點,設

1)證明:PE⊥BC;

2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a∈Z,已知定義在R上的函數(shù)f(x)=2x4+3x3﹣3x2﹣6x+a在區(qū)間(1,2)內有一個零點x0 , g(x)為f(x)的導函數(shù).
(Ⅰ)求g(x)的單調區(qū)間;
(Ⅱ)設m∈[1,x0)∪(x0 , 2],函數(shù)h(x)=g(x)(m﹣x0)﹣f(m),求證:h(m)h(x0)<0;
(Ⅲ)求證:存在大于0的常數(shù)A,使得對于任意的正整數(shù)p,q,且 ∈[1,x0)∪(x0 , 2],滿足| ﹣x0|≥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導函數(shù)f′(x)的極值點是f(x)的零點.(極值點是指函數(shù)取極值時對應的自變量的值)
(Ⅰ)求b關于a的函數(shù)關系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設海拔x m處的大氣壓強是 y Pa,yx 之間的函數(shù)關系式是 ycekx,其中c,k為常量,已知某地某天在海平面的大氣壓為1.01×105 Pa,1 000 m高空的大氣壓為0.90×105 Pa,求600 m高空的大氣壓強(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知當x∈[0,1]時,函數(shù)y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個交點,則正實數(shù)m的取值范圍是( 。
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查高中學生喜歡打羽毛球與性別是否有關,調查人員就“是否喜歡打羽毛球”這個問題,分別隨機調查了名女生和名男生,根據(jù)調查結果得到如圖所示的等高條形圖:

(1)完成下列列聯(lián)表:

喜歡打羽毛球

不喜歡打羽毛球

總計

女生

男生

總計

(2)能否在犯錯誤的概率不超過的前提下認為喜歡打羽毛球與性別有關.

參考數(shù)表:

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:

試根據(jù)圖表中的信息解答下列問題:

(1)求全班的學生人數(shù)及分數(shù)在[70,80)之間的頻數(shù);

(2)為快速了解學生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分數(shù)段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學生中,成績位于[70,80)分數(shù)段的人數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案