【題目】某農(nóng)場共有土地50畝,這些地可種西瓜、棉花、玉米.這些農(nóng)作物每畝地所需勞力和預(yù)計(jì)產(chǎn)值如下表.若該農(nóng)場有20名勞動(dòng)力,應(yīng)怎樣計(jì)劃才能使每畝地都能種上作物(玉米必種),所有勞動(dòng)力都被安排工作(每名勞動(dòng)力只能種植一種作物)且作物預(yù)計(jì)總產(chǎn)值達(dá)最高?

作物

勞力/

產(chǎn)值/

西瓜

1/2

0.6萬元

棉花

1/3

0.5萬元

玉米

1/4

0.3萬元

【答案】安排1人種4畝玉米,8人種24畝棉花,11人種22畝西瓜時(shí),農(nóng)作物總產(chǎn)值最高且每個(gè)勞力都有工作

【解析】試題分析:設(shè)種x畝玉米(4≤x≤50),y畝棉花(0≤y≤50)時(shí),總產(chǎn)值為h且每個(gè)勞動(dòng)力都有工作根據(jù)已知寫出的關(guān)系式 20聯(lián)立整理可得 最終可得.

試題解析:

解:設(shè)種x畝玉米(4≤x≤50),y畝棉花(0≤y≤50)時(shí),總產(chǎn)值為h且每個(gè)勞動(dòng)力都有工作.

所以h0.3x0.5y0.6[50(xy)],且x,y滿足, 20;

整理得 ,且x4k,kN,

所以欲使h為最大,則x應(yīng)為最小,

故當(dāng)x4()時(shí),hmax26.4萬元,此時(shí)y24()

故安排1人種4畝玉米,8人種24畝棉花,11人種22畝西瓜時(shí),農(nóng)作物總產(chǎn)值最高且每個(gè)勞力都有工作.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解喜好體育運(yùn)動(dòng)是否與性別有關(guān),某報(bào)記者隨機(jī)采訪50個(gè)路人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)
15

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

8

10

5

5

喜好人數(shù)

4

6

6

3

3


(1)在調(diào)查的結(jié)果中,喜好體育運(yùn)動(dòng)的女性有10人,不喜好體育運(yùn)動(dòng)的男性有5人,請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由;

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50


(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不喜好體育運(yùn)動(dòng)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望. 下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、BC所對的邊分別為a、b、c,且

1)判斷△ABC的形狀,并加以證明;

2)當(dāng)c = 1時(shí),求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點(diǎn)EPD的中點(diǎn).

(Ⅰ)求證:PA⊥平面ABCD;

(Ⅱ)求二面角E—AC—D的大。

(Ⅲ)求點(diǎn)P到平面EAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)

患流感

未患流感

服用藥

2

18

未服用藥

8

12

根據(jù)表中數(shù)據(jù),通過計(jì)算統(tǒng)計(jì)量K2= ,并參考以下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯(cuò)的概率不超過(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,當(dāng)時(shí), ,且對任意正實(shí)數(shù),滿足.

(1)求;

(2)證明在定義域上是減函數(shù);

(3)如果,求滿足不等式的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,數(shù)列{an}的前n項(xiàng)和記為Sn , 則(
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 處都取得極值.
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案