【題目】如圖,在幾何體中,四邊形是菱形,,平面平面,.
(1)求證:;
(2)若,,求三棱錐和三棱錐的體積.
【答案】(1)證明見解析;(2)1,1
【解析】
(1)連接,與交于點,連接易知,,由線面垂直的判定定理可得平面,從而可證明;
(2)由面面垂直的性質可知,平面,即 為三棱錐的高,結合菱形、等邊三角形的性質,可求出,從而可求三棱錐的體積;由平面,可知點到平面的距離也為,由菱形的性質可知,從而可求出三棱錐的體積.
(1)證明:如圖,連接,與交于點,則為的中點,連接,
由四邊形是菱形可得,因為,所以,
因為,所以平面,因為平面,所以.
(2)因為平面平面,平面平面,且,
所以平面,即 為三棱錐的高.
由,四邊形是菱形,且,
可得與都是邊長為2的等邊三角形,所以,
因為的面積,故.
因為, 平面, 平面,所以平面,
故點到平面的距離也為,由四邊形是菱形得
因此.
科目:高中數學 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實,黃實,利朱用2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2,設勾股中勾股比為,若向弦圖內隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )
A.886B.500C.300D.134
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點,為坐標原點.
(1)求橢圓的標準方程;
(2)求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】垃圾分類,是指按一定規(guī)定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經濟價值,力爭物盡其用.2019年6月25日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統(tǒng);其他地級城市實現公共機構生活垃圾分類全覆蓋.某機構欲組建一個有關“垃圾分類”相關事宜的項目組,對各個地區(qū)“垃圾分類”的處理模式進行相關報道.該機構從600名員工中進行篩選,篩選方法:每位員工測試,,三項工作,3項測試中至少2項測試“不合格”的員工,將被認定為“暫定”,有且只有一項測試“不合格”的員工將再測試,兩項,如果這兩項中有1項以上(含1項)測試“不合格”,將也被認定為“暫定”,每位員工測試,,三項工作相互獨立,每一項測試“不合格”的概率均為.
(1)記某位員工被認定為“暫定”的概率為,求;
(2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構的預算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預算?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,過橢圓:右焦點的直線交于,兩點,且橢圓的離心率為.
(1)求橢圓的方程;
(2),為上的兩點,若四邊形的對角線,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以坐標原點為極點,以軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線的參數方程為(為參數).
(1)點在曲線上,且曲線在點處的切線與直線:垂直,求點的直角坐標;
(2)設直線與曲線有且只有一個公共點,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某普通高中為了解本校高三年級學生數學學習情況,對一?荚嚁祵W成績進行分析,從中抽取了名學生的成績作為樣本進行統(tǒng)計(該校全體學生的成績均在),按下列分組,,,,,,,,作出頻率分布直方圖,如圖;樣本中分數在內的所有數據的莖葉圖如圖:
根據往年錄取數據劃出預錄分數線,分數區(qū)間與可能被錄取院校層次如表.
(1)求的值及頻率分布直方圖中的值;
(2)根據樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學生中任取人,求此人都不能錄取為?频母怕;
(3)在選取的樣本中,從可能錄取為自招和?苾蓚層次的學生中隨機抽取名學生進行調研,用表示所抽取的名學生中為自招的人數,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某教研機構隨機抽取某校20個班級,調查各班關注漢字聽寫大賽的學生人數,根據所得數據的莖葉圖,以組距為5將數據分組成時,所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com