【題目】某教研機(jī)構(gòu)隨機(jī)抽取某校20個(gè)班級(jí),調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時(shí),所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
【答案】A
【解析】由頻率分布直方圖可知:第一組的頻數(shù)為20×0.01×5=1個(gè),
[0,5)的頻數(shù)為20×0.01×5=1個(gè),
[5,10)的頻數(shù)為20×0.01×5=1個(gè),
[10,15)頻數(shù)為20×0.04×5=4個(gè),
[15,20)頻數(shù)為20×0.02×5=2個(gè),
[20,25)頻數(shù)為20×0.04×5=4個(gè),
[25,30)頻數(shù)為20×0.03×5=3個(gè),
[30,35)頻數(shù)為20×0.03×5=3個(gè),
[35,40]頻數(shù)為20×0.02×5=2個(gè),
則對(duì)應(yīng)的莖葉圖為A,
本題選擇A選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求的最大值;
(2)若對(duì)于任意的,不等式恒成立,求整數(shù)a的最小值.(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為正三角形,且,,將沿翻折.
(1)若點(diǎn)的射影在上,求的長(zhǎng);
(2)若點(diǎn)的射影在中,且直線與平面所成角的正弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②這兩個(gè)條件中任選-一個(gè),補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題.
在中,角的對(duì)邊分別為,已知 ,.
(1)求;
(2)如圖,為邊上一點(diǎn),,求的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車品牌為了解客戶對(duì)其旗下的五種型號(hào)汽車的滿意情況,隨機(jī)抽取了一些客戶進(jìn)行回訪,調(diào)查結(jié)果如下表:
汽車型號(hào) | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
回訪客戶(人數(shù)) | 250 | 100 | 200 | 700 | 350 |
滿意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
滿意率是指某種型號(hào)汽車的回訪客戶中,滿意人數(shù)與總?cè)藬?shù)的比值.假設(shè)客戶是否滿意互相獨(dú)立,且每種型號(hào)汽車客戶對(duì)于此型號(hào)汽車滿意的概率與表格中該型號(hào)汽車的滿意率相等.
(1)從所有的回訪客戶中隨機(jī)抽取1人,求這個(gè)客戶滿意的概率;
(2)從Ⅰ型號(hào)和Ⅴ型號(hào)汽車的所有客戶中各隨機(jī)抽取1人,設(shè)其中滿意的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,分別是的中點(diǎn),將沿折起,如圖所示,記二面角的大小為
(1)證明:
(2)若為正三角形,試判斷點(diǎn)在平面內(nèi)的身影是否在直線上,證明你的結(jié)論,并求角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若時(shí),求證:對(duì)于任意的,均有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com