【題目】如圖,某人工景觀湖外圍有兩條相互垂直的直線型公路ll,l2,且ll和l2交于點(diǎn)O.為了方便游客游覽,計劃修建一條連接公路與景觀湖的直線型公路AB.景觀湖的輪廓可以近似看成一個圓心為O,半徑為2百米的圓,且公路AB與圓O相切,圓心O到ll,l2的距離均為5百米,設(shè)OAB=,AB長為L百米.
(1)求L關(guān)于的函數(shù)解析式;
(2)當(dāng)為何值時,公路AB的長度最短?
【答案】(1),.(2)當(dāng)時,公路的長度最短
【解析】
(1)建立平面直角坐標(biāo)系,得到直線方程為,然后根據(jù)直線與圓相切,得,再根據(jù)題意得到,于是,即為所求.(2)利用換元法求解,令,則,且,于是,然后結(jié)合導(dǎo)數(shù)求解可得所求最值.
(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則.
在直角中,,,
所以直線方程為,
即,
因?yàn)橹本與圓相切,
所以,
因?yàn)辄c(diǎn)在直線的上方,
所以,
解得.
因此L關(guān)于的函數(shù)解析式為,.
(2)令,則,且,
所以,
因?yàn)?/span>,
所以在上單調(diào)遞減,
所以當(dāng),即時,取得最小值,且.
故當(dāng)時,公路的長度最短.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)是橢圓上的一個動點(diǎn),當(dāng)直線的斜率等于時,軸.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)且斜率為的直線與直線相交于點(diǎn),試判斷以為直徑的圓是否過軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標(biāo)方程;
(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,與交于點(diǎn),與交于點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則稱該函數(shù)為“依賴函數(shù)”.
(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;
(2)若函數(shù)在定義域()上為“依賴函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“依賴函數(shù)”.若存在實(shí)數(shù),使得對任意的,不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,,E是PC的中點(diǎn),平面PAC⊥平面ABCD.
(1)證明:ED∥平面PAB;
(2)若,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定實(shí)數(shù) t,已知命題 p:函數(shù) 有零點(diǎn);命題 q: x∈[1,+∞) ≤4-1.
(Ⅰ)當(dāng) t=1 時,判斷命題 q 的真假;
(Ⅱ)若 p∨q 為假命題,求 t 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運(yùn)動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進(jìn)行了考核.記X表示學(xué)生的考核成績,并規(guī)定X≥85為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績,并作成如下莖葉圖.
(1)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核優(yōu)秀的概率;
(2)從圖中考核成績滿足X[70,79]的學(xué)生中任取3人,設(shè)Y表示這3人重成績滿足≤10的人數(shù),求Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F是拋物線的焦點(diǎn),點(diǎn)M是拋物線上的定點(diǎn),且.
(1)求拋物線C的方程;
(2)直線AB與拋物線C交于不同兩點(diǎn),直線與AB平行,且與拋物線C相切,切點(diǎn)為N,試問△ABN的面積是否是定值.若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查民眾對國家實(shí)行“新農(nóng)村建設(shè)”政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持“新農(nóng)村建設(shè)”人數(shù)如下表:
年齡 | ||||||
頻數(shù) | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新農(nóng)村建設(shè)” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以50歲為分界點(diǎn)對“新農(nóng)村建設(shè)”政策的支持度有差異;
年齡低于50歲的人數(shù) | 年齡不低于50歲的人數(shù) | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)為了進(jìn)一步推動“新農(nóng)村建設(shè)”政策的實(shí)施,中央電視臺某節(jié)目對此進(jìn)行了專題報道,并在節(jié)目最后利用隨機(jī)撥號的形式在全國范圍內(nèi)選出4名幸運(yùn)觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當(dāng)?shù)莫剟?/span>.若以頻率估計概率,記選出4名幸運(yùn)觀眾中支持“新農(nóng)村建設(shè)”人數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com