【題目】如圖(1),在三角形中,為其中位線,且,若沿將三角形折起,使,構成四棱錐,且.
(1)求證:平面 平面;
(2)當 異面直線與所成的角為時,求折起的角度.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)可先證,從而得到平面,再證,可得平面,由,可證明平面平面;(2)由,取的中點,連接,可得即為異面直線與所成的角或其補角,即為所折起的角度.在三角形中求角即可.
試題解析:
(1)因為,所以,
因為,為中點,,所以且,所以四邊形為平行四邊形,所以,
而,,又,所以平面,
因為,所以平面,又因為平面,平面,
所以且,又因為在平面中,(三角形的中位線),于是.
因為在平面中,,于是,
因為,平面,平面,所以平面,
又因為,所以平面平面.
(2)因為,取的中點,連接,所以,,又,,所以,,從而四邊形為平行四邊形,所以,得;同時,因為,,所以,故折起的角度.
科目:高中數(shù)學 來源: 題型:
【題目】學校舉辦運動會時,高一(1)班有28名同學參加比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同時參加游泳和田徑比賽的有3人,同時參加游泳和球類比賽的有3人,沒有人同時參加三項比賽.則同時參加田徑和球類比賽的人數(shù)是( ).
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第年需要付出設備的維修和工人工資等費用的信息如下圖 .
(1)求;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)是定義在上的奇函數(shù),且.
(1)求實數(shù)的值;
(2)判斷函數(shù)的單調性,并用定義證明;
(3)解不等式: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司過去五個月的廣告費支出與銷售額(單位:萬元)之間有下列對應數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知對呈線性相關關系,且回歸方程為,則下列說法:①銷售額與廣告費支出正相關;②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標方程;
(2)點與點關于軸對稱,求曲線上的點到點的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:(x﹣2)2+(y+1)2=5,過點P(5,0)且斜率為k的直線與圓C相交于不同的兩點A,B.
(I)求k的取值范圍;
(Ⅱ)若弦長|AB|=4,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在復平面內,復數(shù)3-4i,i(2+i)對應的點分別是A,B,則線段AB的中點C對應的復數(shù)為( )
A.-2+2iB.2-2i
C.-1+iD.1-i
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com