【題目】已知,為橢圓的左右焦點,在以為圓心,1為半徑的圓上,且.

1)求橢圓的方程;

2)過點的直線交橢圓,兩點,過垂直的直線交圓,兩點,為線段的中點,求的面積的取值范圍.

【答案】(1) ;(2) .

【解析】

(1) 在以為圓心,1為半徑的圓上,可知圓的方程為,由此圓與軸相切,可得切點坐標為,則可得出,由兩點間距離公式可求得即求出的值,進而求得,由此能求出橢圓的方程.

(2)因為 ,則,與橢圓聯(lián)立,得,由此利用弦長公式可求得、又.可知,的距離即的距離,利用點到直線距離公式即可求得距離,通過面積公式可得,,構(gòu)造函數(shù)化簡、借助單調(diào)性即可求出面積的取值范圍.

(1) 的方程為,此圓與軸相切,則切點為,

所以,

所以.

所以橢圓的方程為.

(2) 平行軸的時候,與圓無公共點,從而不存在;,.

,消去

又圓心的距離..的距離即的距離,設為,.

面積

面積的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某控制器中有一個易損部件,該部件由兩個電子元件按圖1方式連接而成.已知這兩個電子元件的使用壽命(單位:小時)均服從正態(tài)分布,且各個元件能否正常工作相互獨立.(一個月按30天算)

1)求該部件的使用壽命達到一個月及以上的概率;

2)為了保證該控制器能穩(wěn)定工作,將若干個同樣的部件按圖2連接在一起組成集成塊.每一個部件是否能正常工作相互獨立.某開發(fā)商準備大批量生產(chǎn)該集成塊,在投入生產(chǎn)前,進行了市場調(diào)查,結(jié)果如下表:

集成塊類型

成本

銷售金額

其中是集成塊使用壽命達到一個月及以上的概率,為集成塊使用的部件個數(shù).報據(jù)市場調(diào)查,試分析集成塊使用的部件個數(shù)為多少時,開發(fā)商所得利潤最大?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),下列命題:

的定義域為

是奇函數(shù);

上單調(diào)遞增;

④若實數(shù)滿足,則;

⑤設函數(shù)在上的最大值為,最小值為,則.

其中真命題的序號是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設遞增等比數(shù)列{an}的前n項和為Sn,且a23S313,數(shù)列{bn}滿足b1a1,點Pbn,bn+1)在直線xy+20上,nN*.

1)求數(shù)列{an},{bn}的通項公式;

2)設cn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其定義域為.(其中常數(shù),是自然對數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.

1)若軸,且滿足直線與圓相切,求圓的方程;

2)若圓的半徑為,點滿足,求直線被圓截得弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著新政策的實施,海淘免稅時代于201648日正式結(jié)束,新政策實施后,海外購物的費用可能會增加.為了解新制度對海淘的影響,某網(wǎng)站調(diào)查了喜歡海淘的1000名網(wǎng)友,其態(tài)度共有兩類:第一類是會降低海淘數(shù)量,共有400人,第二類是不會降低海淘數(shù)量,共有600人,若從這1000人中按照分層抽樣的方法抽取10人后進行打分,其打分的莖葉圖如下圖所示,圖中有數(shù)據(jù)缺失,但已知“第一類”和“第二類”網(wǎng)民打分的均值相等,則“第一類”網(wǎng)民打分的方差為(

A.159B.179C.189D.209

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學生自主創(chuàng)業(yè),經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤800元,未售出的產(chǎn)品,每虧損200.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.該大學生為下一個銷售季度購進了該農(nóng)產(chǎn)品.(單位:)表示下一個銷售季度內(nèi)的市場需求量,(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

1)將表示為的函數(shù);

2)根據(jù)直方圖估計利潤不少于94000元的概率;

3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若,則取,且的概率等于需求量落入的頻率),求的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知

(1)設上的一點,證明:平面平面

(2)求四棱錐的體積.

查看答案和解析>>

同步練習冊答案