(本小題滿分10分)
已知拋物線與直線交于兩點(diǎn).
(Ⅰ)求弦的長度;
(Ⅱ)若點(diǎn)在拋物線上,且的面積為,求點(diǎn)P的坐標(biāo).

(Ⅰ)  (Ⅱ) (9,6)或(4,-4)

解析試題分析:(Ⅰ)設(shè)A(x1,y1)、B(x2,y2),
得x2-5x+4=0,Δ>0.
法一:又由韋達(dá)定理有x1+x2=5,x1x2=,
∴|AB|= =
法二:解方程得:x=1或4,∴A、B兩點(diǎn)的坐標(biāo)為(1,-2)、(4,4)
∴|AB|=
(Ⅱ)設(shè)點(diǎn),設(shè)點(diǎn)P到AB的距離為d,則
,∴S△PAB=··=12,
.    ∴,解得
∴P點(diǎn)為(9,6)或(4,-4).
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):直線與圓錐曲線相交,聯(lián)立方程利用韋達(dá)定理是常用的思路

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中為坐標(biāo)原點(diǎn))

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),當(dāng)時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知橢圓經(jīng)過點(diǎn),且其右焦點(diǎn)與拋物線的焦點(diǎn)F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過點(diǎn)與橢圓相交于A、B兩點(diǎn),與拋物線相交于C、D兩點(diǎn).求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題16分)設(shè)雙曲線:的焦點(diǎn)為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動(dòng)點(diǎn),且2,求線段AB中點(diǎn)M的軌跡方程,并說明軌跡是什么曲線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點(diǎn),點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).  
證明:以線段為直徑的圓恒過軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長為
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點(diǎn)。
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),且·=求點(diǎn)的坐標(biāo)。
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中O為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)橢圓C1的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn).

(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)M(0,),N為拋物線C2上的一動(dòng)點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若橢圓的離心率為,焦點(diǎn)在軸上,且長軸長為10,曲線上的點(diǎn)與橢圓的兩個(gè)焦點(diǎn)的距離之差的絕對(duì)值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線的方程。

查看答案和解析>>

同步練習(xí)冊答案