(本題滿分14分)
已知橢圓過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點(diǎn),點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).  
證明:以線段為直徑的圓恒過(guò)軸上的定點(diǎn).

(1); (2)

解析試題分析:(1)由題意可知,, …………1分  而,……………2分
.  …………3分       解得,……………4分
所以,橢圓的方程為.    ……………5分
(2)由題可得.設(shè),   ……………6分
直線的方程為,    ……………7分
,則,即; ……………8分
直線的方程為,   ……………9分
,則,即; ……………10分
證法1:設(shè)點(diǎn)在以線段為直徑的圓上,則,
,         …………11分
,而,即,,.                               ……………13分
故以線段為直徑的圓必過(guò)軸上的定點(diǎn)
、.                                  ……………14分
證法2:以線段為直徑的圓為
          ………11分
,得,    ……………12分
,即,, 
……………13分
故以線段為直徑的圓必過(guò)軸上的定點(diǎn)
、.                          ……………14分
證法3:令,則,令,得,同理得.
∴以為直徑的圓為,令解得 
∴圓過(guò)                          ……………11分
由前,對(duì)任意點(diǎn),可得,  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

討論方程)所表示的曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過(guò)點(diǎn),其中e為橢圓的離心率.且橢圓與直線 有且只有一個(gè)交點(diǎn)。

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不經(jīng)過(guò)原點(diǎn)的直線與橢圓相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時(shí)直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:













 
1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;
2)設(shè)直線與橢圓交于不同的兩點(diǎn),且(其中坐標(biāo)原點(diǎn)),請(qǐng)問(wèn)是否存在這樣的直線過(guò)拋物線的焦點(diǎn)若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過(guò)定點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
已知拋物線與直線交于兩點(diǎn).
(Ⅰ)求弦的長(zhǎng)度;
(Ⅱ)若點(diǎn)在拋物線上,且的面積為,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分) 已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,橢圓 的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是,點(diǎn)在橢圓上.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動(dòng)直線與軌跡處的切線平行,且直線與橢圓交于兩點(diǎn),問(wèn):是否存在著這樣的直線使得的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦點(diǎn),長(zhǎng)軸長(zhǎng)6,設(shè)直線交橢圓,兩點(diǎn),求線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案