【題目】的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知
(1)求角B的大;
(2)若,求的面積.
【答案】(1)B=(2)
【解析】試題分析:(1)利用正弦定理將已知等式化簡(jiǎn),再根據(jù)兩角和正弦函數(shù)公式及變形,求出 的值,結(jié)合 為三角形的內(nèi)角即可算出角的大小;(2)三角形內(nèi)角和定理可求得角 ,利用正弦定理求出 的值,再由三角形的面積公式得到結(jié)果.
試題解析:(1)∵a=bcosC+csinB,∴由正弦定理可得:sinA=sinBcosC+sinCsinB,
∴sin(B+C)=sinBcosC+sinCsinB,即cosBsinC=sinCsinB,∵sinC≠0,∴,
∴, ,∴B=
(2)由(1)可得,
由正弦定理可得: ,∴,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《選修4—4:坐標(biāo)系與參數(shù)方程》
已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox方向?yàn)闃O軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線(xiàn)C的極坐標(biāo)方程為ρ=2cos(θ-).
(1)求直線(xiàn)l的傾斜角和曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C交于A(yíng),B兩點(diǎn),設(shè)點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐,底面為直角梯形,,底面,
為的中點(diǎn),為棱的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)已知,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo),且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知點(diǎn)的極坐標(biāo)為,圓的極坐標(biāo)方程為,若為曲線(xiàn)上的動(dòng)點(diǎn),且到定點(diǎn)的距離等于圓的半徑.
(1)求曲線(xiàn)的直角坐標(biāo)方程;
(2)若過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為(為參數(shù)),且直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷對(duì)錯(cuò).
(1)若a>b,則ac>bc一定成立.(______)
(2)若a+c>b+d,則a>b,c>d.(______)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD.若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其下列敘述正確的是( )
A. 滿(mǎn)足λ+μ=2的點(diǎn)P必為BC的中點(diǎn)
B. 滿(mǎn)足λ+μ=1的點(diǎn)P有且只有一個(gè)
C. λ+μ的最大值為3
D. λ+μ的最小值不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn), ,點(diǎn)滿(mǎn)足,其中, ,且;圓的圓心在軸上,且與點(diǎn)的軌跡相切與點(diǎn).
(1)求圓的方程;
(2)若點(diǎn),點(diǎn)是圓上的任意一點(diǎn),求的取值范圍;
(3)過(guò)點(diǎn)的兩條直線(xiàn)分別與圓交于、兩點(diǎn),若直線(xiàn)、的斜率互為相反數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,點(diǎn)在平面內(nèi)的射影在棱上,,底面是梯形,,且.
(1)求證:平面平面;
(2)若直線(xiàn)與所成角為60°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),過(guò)點(diǎn)動(dòng)直線(xiàn)與圓交與點(diǎn)兩點(diǎn).
(1)若,求直線(xiàn)的傾斜角;
(2)求線(xiàn)段中點(diǎn)的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com