【題目】已知二次函數(shù)f(x)=ax2+2x+c(a≠0),函數(shù)f(x)對(duì)于任意的都滿足條件f(1+x)=f(1﹣x).
(1)若函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(0,1)上有零點(diǎn),求實(shí)數(shù)c的取值范圍.

【答案】
(1)解:函數(shù)f(x)對(duì)于任意的都滿足條件f(1+x)=f(1﹣x),

∴函數(shù)f(x)的對(duì)稱(chēng)軸為x=1,

∴﹣ =1,

解得a=﹣1,

∵函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),

∴c=2,

∴f(x)=﹣x2+2x+2


(2)解:∵函數(shù)f(x)在區(qū)間(0,1)上有零點(diǎn),

∴f(0)f(1)<0,

∴c(﹣1+2+c)<0,

解得﹣1<c<0


【解析】(1)函數(shù)f(x)對(duì)于任意的都滿足條件f(1+x)=f(1﹣x),得到函數(shù)f(x)的對(duì)稱(chēng)軸為x=1,即可求出a的值,再根據(jù)函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),求出c的值,問(wèn)題得以解決.(2)根據(jù)函數(shù)零點(diǎn)的性質(zhì)結(jié)合二次函數(shù)的性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的性質(zhì),需要了解當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是矩形, ⊥平面, , .

(1)求證: ⊥平面

(2)求二面角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[﹣1,2m]上不具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
(2)若f(1)=g(1).
(。┣髮(shí)數(shù)a的值;
(ⅱ)設(shè) ,t2=g(x), ,當(dāng)x∈(0,1)時(shí),試比較t1 , t2 , t3的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),比較與1的大小;

(2)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)求證:對(duì)于一切正整數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 的定義域是一切實(shí)數(shù),則m的取值范圍是(
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖:

(1)求頻率分布直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)赱50,70)的學(xué)生任選2人,求此2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則不等式x5f(x)>0的解集為(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,定點(diǎn)為圓上一動(dòng)點(diǎn),線段的垂直平分線交線段于點(diǎn),設(shè)點(diǎn)的軌跡為曲線

(Ⅰ)求曲線的方程;

(Ⅱ)若經(jīng)過(guò)的直線交曲線于不同的兩點(diǎn),(點(diǎn)在點(diǎn), 之間),且滿足,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案