【題目】如圖,四棱錐的底面是矩形, ⊥平面, , .
(1)求證: ⊥平面;
(2)求二面角余弦值的大;
【答案】(1)見解析(2)
【解析】試題分析:(1)利用空間向量證明線面垂直,即證平面的一個法向量為 ,先根據(jù)條件建立恰當(dāng)直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用向量數(shù)量積證明為平面的一個法向量,最后根據(jù)線面垂直判定定理得結(jié)論(2)利用空間向量求二面角,先利用解方程組的方法求出平面法向量,利用向量數(shù)量積求出兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系確定二面角大小
試題解析:證:(1)建立如圖所示的直角坐標(biāo)系,
則A(0,0,0)、D(0,2,0)、P(0,0,2).
在Rt△BAD中,AD=2,BD=,
∴AB=2.∴B(2,0,0)、C(2,2,0),
∴
∵,即BD⊥AP,BD⊥AC,又AP∩AC=A,∴BD⊥平面PAC.
(2)由(1)得.
設(shè)平面PCD的法向量為,則,
即,∴故平面PCD的法向量可取為
∵PA⊥平面ABCD,∴為平面ABCD的法向量.
設(shè)二面角P—CD—B的大小為q,依題意可得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是圓柱的上、下底面圓的直徑, 是邊長為2的正方形, 是底面圓周上不同于兩點的一點, .
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體中,四邊形為平行四邊形, ,且, , , .
(1)求證:平面平面;
(2)若,直線與平面夾角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣bx+c,f(x)的對稱軸為x=1且f(0)=﹣1.
(1)求b,c的值;
(2)當(dāng)x∈[0,3]時,求f(x)的取值范圍.
(3)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù)f(x)=ax2﹣2x+lnx(a≠0,a∈R).
(1)判斷函數(shù) f (x)的單調(diào)性;
(2)若函數(shù) f (x)有兩個極值點x1,x2,求證:f(x1)+f(x2)<﹣3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,曲線在點處的切線與軸相交于點.
(1)確定的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+2x+c(a≠0),函數(shù)f(x)對于任意的都滿足條件f(1+x)=f(1﹣x).
(1)若函數(shù)f(x)的圖象與y軸交于點(0,2),求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(0,1)上有零點,求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com